Przeskocz do treści

Delta mi!

  1. Planimetria

    Przesuwanie w zadaniach olimpijskich

    W tym artykule omówimy pewną bardzo pożyteczną technikę - tzw. przesuwanie. Polega ona na tym, że niektóre obiekty przesuwamy o pewien wektor i udowadniamy, że teza zadania jest niezmiennicza ze względu na wykonanie tej operacji. Ta metoda pozwala na sprowadzenie rozwiązywanego zadania do znacznie prostszego. Bardzo często ten prostszy przypadek ma jakiś rodzaj symetrii, z której łatwo wywnioskować tezę. Zanim przejdziemy do rozwiązywania zadań, odnotujmy dwie proste własności opisanej operacji.

  2. Stereometria Kącik przestrzenny

    Sfery Dandelina

    Sfery, o których jest mowa na sąsiedniej stronie, nazywane są sferami Dandelina na cześć francuskiego matematyka Germinala Pierra Dandelina (1794–1847), który badając stożkowe, rozwinął pomysły Apoloniusza z Pergi (III w. p.n.e.).

  3. Stereometria Kącik przestrzenny

    O pożytku ze sfery wpisanej

    W tym kąciku chcielibyśmy powrócić do pewnych własności sfery wpisanej w czworościan, o których pisaliśmy w kąciku 2 o najmocniejszym twierdzeniu stereometrii (Delta 3/2010). Okazuje się, że można je wykorzystać do udowodnienia faktów pozornie niezwiązanych ze sferą wpisaną.

  4. Analiza

    Nierówności i styczne

    W dowodzeniu nierówności często pomocna bywa tak zwana metoda stycznych. Zdarza się, że wykres funkcji leży nad pewną prostą styczną do niego lub pod taką prostą (wszędzie lub tylko na jakimś przedziale). To oznacza, że możemy oszacować wartości tej funkcji przez wartości funkcji liniowej, której wykresem jest wybrana styczna. Żeby takie oszacowanie doprowadziło do celu, wybrana styczna musi przechodzić przez punkt, dla którego badana nierówność jest równością. Przyjrzymy się kilku przykładom zastosowań tej metody.

  5. Stereometria Kącik przestrzenny

    Inwersja w przestrzeni i rzut stereograficzny

    Kiedy na płaszczyźnie mamy do czynienia z okręgami, to bardzo często posługujemy się rachunkiem na kątach, ponieważ znamy wiele przydatnych twierdzeń i faktów z tego zakresu. Niestety, trudno o analogiczne narzędzia w przestrzeni. Stanowi to wielki kłopot, gdy zmagamy się z zadaniami o sferach. Istnieje jednak kilka innych technik, skutecznych w zadaniach o okręgach, które działają również w przestrzeni. Są to: potęga punktu, jednokładność oraz inwersja. O tej ostatniej metodzie opowiemy w tym kąciku.

  6. Planimetria

    Okrąg dziewięciu punktów i pewne dwa fakty

    Trzy niewspółliniowe punkty na płaszczyźnie jednoznacznie wyznaczają okrąg, który przez nie przechodzi. Zatem jeśli pewne cztery punkty leżą na jednym okręgu, to jest to fakt godny odnotowania. W geometrii istnieje niezwykle urocze twierdzenie, które mówi, że aż dziewięć szczególnych punktów trójkąta leży na jednym okręgu.

  7. Stereometria Kącik przestrzenny

    Jak wyjść z dżungli?

    Każdy, kto był w dżungli lub chociaż widział ją w jakimś filmie, wie, że poruszanie się po niej jest, delikatnie mówiąc, dosyć uciążliwe. Stanowi to ogromny kłopot szczególnie wtedy, gdy ktoś się w niej zgubi i chce się jakoś wydostać. Nie dość, że nie wiadomo, w jakim kierunku iść, to w ogóle ciężko jest nam pokonywać przeszkody (a rozwiązania siłowe, takie jak maczeta, niewiele dają). Istnieje następujące zalecenie: wystarczy znaleźć strumień (co zresztą wcale nie musi być łatwe), a potem liczyć na to, że zaprowadzi nas on do większej rzeki, a ta, być może, do morza.

  8. Planimetria Drobiazgi

    O prostej Simsona raz jeszcze

    Myślę, że niemal każdy Czytelnik miał okazję się z nią spotkać. Załóżmy, że mamy dany trójkąt, i wybierzmy dowolny punkt math z okręgu na nim opisanego. Wówczas rzuty prostokątne punktu math na proste zawierające boki danego trójkąta leżą na jednej prostej zwanej prostą Simsona.

  9. Stereometria Kącik przestrzenny

    Kąty płaskie w przestrzeni

    Tym razem opowiemy o kątach w przestrzeni, a dokładniej o tym, jak rozwiązywać zadania zawierające nierówności miar kątów w przestrzeni. W zadaniach pojawiają się dwa typy kątów – płaskie i dwuścienne. Ten odcinek poświęcimy kątom płaskim, a o dwuściennych opowiemy następnym razem.

  10. Algorytmy Mała Delta

    O rozgrywkach ligowych

    W sporcie stosowane są różne systemy prowadzenia rozgrywek. Jednym z nich jest tzw.  system pucharowy, w którym zwycięzca meczu kwalifikuje się do dalszych gier, przegrany zaś odpada z turnieju. Aby system był bardziej sprawiedliwy, dokonuje się początkowego rozstawienia przeciwników, tak by teoretycznie najsilniejsi spotkali się jak najpóźniej.