Przeskocz do treści

Delta mi!

Loading
  1. Stereometria Drobiazgi

    Dwie sfery w jednym miejscu

    W IV wieku przed naszą erą za sprawą Platona panowało powszechne przekonanie, że sfera niebieska - jako doskonała - dopuszcza jedynie doskonałe ruchy planet, jedynych ruchomych obiektów na niej. Ruchy doskonałe to ruchy jednostajne i odbywające się po doskonałych trajektoriach. Doskonała trajektoria to taka, która może ślizgać się po sobie - na sferze tę własność mają tylko okręgi. Powstawał więc problem, jak wytłumaczyć nieregularności ruchu planet na niebie, a w szczególności powstawanie pętli, o jakich jest mowa w artykule Tomasza Kwasta.

  2. Planimetria Drobiazgi

    Zadanie Alhazena

    Gdy na lustrzaną sferę pada promień światła, odbija się on tak, że kąt między nim a przedłużeniem promienia sfery przechodzącego przez punkt, w którym promień pada, jest równy kątowi między tym przedłużeniem a promieniem odbitym, przy czym wszystko odbywa się w jednej płaszczyźnie wyznaczonej przez padający promień i środek sfery. Geometrycznie sytuacja jest więc dwuwymiarowa.

  3. Astronomia Drobiazgi

    Pętle na niebie

    Zapewne każdy zetknął się z informacją, że planety kreślą na niebie tajemnicze pętle. Spodziewamy się, że nie dzieje się to "w oczach", bo takie zjawiska toczą się dość majestatycznie. Jeżeli jednak ktoś ma cierpliwość, to owe pętle może osobiście zaobserwować.

  4. Stereometria Drobiazgi

    Wielościan w zeszycie

    Prawie każdy wielościan ma talię (to wśród nich jest nawet częstsze niż u ludzi!), czyli pewien jego płaski przekrój ma obwód mniejszy od sąsiednich (dokładniej: niewielka zmiana płaszczyzny tnącej daje wielokąt o większym obwodzie - a bardziej po ludzku: nałożona w takim miejscu gumka recepturka nie zsunie się). Dla sześcianu taką talią jest jego przekrój będący sześciokątem foremnym (narysuj ją!).

  5. obrazek

    Gry, zagadki, paradoksy Drobiazgi

    Krzyżak litewski

    to nie tylko Konrad Wallenrod, lecz także łamigłówka popularna wśród litewskich drwali. Redakcja Delty ma wystrugane przez jednego z nich sześć drewienek, takich jak na rysunku, z których można złożyć widoczny niżej krzyżak, choć nie jest to zadanie łatwe.

  6. Stereometria Drobiazgi

    Brzydka prawda

    Wielościan wypukły, którego ściany są jednakowymi wielokątami foremnymi, może mieć ściany trójkątne, czworokątne lub pięciokątne. Ostatnie dwa przypadki realizują się tylko w postaci sześcianu i dwunastościanu...

  7. Teoria grafów Drobiazgi

    Cykle Hamiltona na wielościanach foremnych

    Zadanie 44 w książce 100 zadań Hugona Steinhausa dotyczy zamkniętych dróg po krawędziach wielościanu foremnego, które przechodzą dokładnie jeden raz przez każdy wierzchołek, czyli złożonych z krawędzi cykli Hamiltona. Chodzi o to, aby znaleźć wszystkie kształty takich cykli i policzyć, ile ich jest (z dokładnością do położenia) dla każdego wielościanu foremnego.

  8. Geometria Drobiazgi

    Nawijamy, odwijamy

    Jaką długość ma linia śrubowa owijająca dwukrotnie walec o promieniu 1 i wysokości 4, tak jak widać na obrazku? Oczywiście, | -2--- 4 π 1. Aby przekonać się, że rzeczywiście, wystarczy spojrzeć na obrazek z prawej - jeśli nawiniemy go na walec, to otrzymamy obrazek z lewej.

  9. Mechanika Drobiazgi

    Fuzja Bonda

    James Bond jest ścigany przez niegodziwego doktora No. Samochód Bonda rozwija maksymalną prędkość math ale samochód doktora No rozwija nieco większą prędkość math James Bond w szkole dla szpiegów słyszał o zasadzie zachowania pędu i postanawia ją wykorzystać - zaczyna strzelać do przeciwnika...

  10. Teoria liczb Drobiazgi

    Choć proste to nieproste

    Starożytni Egipcjanie sprzed 4000 lat uznawali tylko ułamki proste, czyli takie, które w liczniku miały jedynkę. Oczywiście, były też inne ułamki, ale o nich uczeni mówić nie chcieli – przedstawiali je jako sumę ułamków prostych. Nie byłoby w tym niczego nadzwyczajnego, gdyby nie pretensjonalne wymaganie, aby w owej sumie każdy ułamek był inny.

  11. Biologia Aktualności (nie tylko) fizyczne

    Małpy liczą niedościgle

    Kultura matematyczna jest kluczowym aspektem ogólnoludzkiej kultury. Wykazano, że wiele gatunków zwierząt (badano głównie ssaki i ptaki) potrafi liczyć, tzn. prawidłowo oceniać liczebność zbiorów skończonych. Oczywiście, precyzja takiej oceny maleje wraz z tą liczebnością (np. przeciętni ludzie radzą sobie z takim liczeniem do około siedmiu).

  12. Fizyka Drobiazgi

    Fizyka i jajo

    Jeśli się weźmie do ręki jajo i ściśnie palcami za „ostry” i „tępy” czubek, wyczuje się opór. Jest on dość spory, jak na niewielką grubość skorupki jaja. Przeciętne jajo wytrzymuje bez pękania nacisk odpowiadający ciężarowi dwuipółkilogramowego ciała. Udaje się dzięki temu prosta sztuczka, która spodobać się może wszystkim, którzy marzą o innym zastosowaniu nabiału niż produkcja wielojajecznych bab, serników i sękaczy na święta...

  13. Stereometria Drobiazgi

    Piłka w puszce

    Piłki tenisowe na ogół pakowane są w rurkę po kilka sztuk. Wyobraźmy sobie piłki tak cenne, że pakowane są każda oddzielnie. Takie opakowanie to z matematycznego punktu widzenia walec...

  14. Materiały Aktualności (nie tylko) fizyczne

    Ekspansja pod ciśnieniem

    Materiały porowate robią coraz większą karierę. Jednym z bardziej popularnych haseł jest MOF (Metal-Organic Framework), czyli struktura(y) metaliczno-organiczna. Wiele zespołów zajmuje się twórczością w tej dziedzinie. Dosłownie. Tworzone są nowe materiały z nadzieją uzyskania filtrów, schowków na wodór, ditlenek węgla, radon.

  15. Światło Aktualności (nie tylko) fizyczne

    Czapka-niewidka

    Wraz z wynalezieniem meta-materiałów o ujemnym współczynniku załamania ukrywanie się pod czapką-niewidką (a raczej peleryną-niewidką) z bajek, fantastyki czy magii przechodzi do rzeczywistości. Żyjemy jednak w czasoprzestrzeni, więc można pomyśleć o ukryciu się również w czasie, a nie tylko w przestrzeni. Chodziłoby np. o ukrycie procesu przesyłania (przetwarzania) informacji. Jak można by było to zrealizować?

  16. Historia i filozofia nauk Drobiazgi

    My, ludzie

    Jest taki zdumiewający moment w dziejach świata, gdy my, ludzie, uznaliśmy za niezbędne udzielenie odpowiedzi na pytanie, co właściwie wyróżnia nas spośród wszelkich żywych stworzeń. Było to w wieku math  VI. Owa niezbędność pojawiła się we wszystkich stronach świata, we wszystkich kulturach i – co jeszcze dziwniejsze, wobec braku możliwości bezpośredniego, a choćby nawet sensownie szybkiego kontaktu – pojawiła się jednocześnie.

  17. Gry, zagadki, paradoksy Drobiazgi

    Świat idzie naprzód

    W Delcie 3/1979 zamieściliśmy największy znany wówczas kwadrat magiczny złożony z różnych liczb pierwszych – było ich 169. Co więcej, był to kwadrat „cebulkowy”. A dziś – proszę: istnieje już „cebulkowy” kwadrat magiczny aż o trzy większy, złożony zatem z dwustu pięćdziesięciu sześciu liczb pierwszych. I jak tu nie wierzyć w postęp!

  18. Historia i filozofia nauk Drobiazgi

    Powiadają, że...

    ...dwaj najmłodsi uczniowie Galileusza, Bonaventura Cavalieri i Evangelista Torricelli, byli ludźmi do tego stopnia pogodnymi i pełnymi poczucia humoru, że nawet podczas pracy naukowej robili sobie wzajemnie zaawansowane psikusy ku uciesze znajomych.

  19. Planimetria Drobiazgi

    O prostej Simsona raz jeszcze

    Myślę, że niemal każdy Czytelnik miał okazję się z nią spotkać. Załóżmy, że mamy dany trójkąt, i wybierzmy dowolny punkt math z okręgu na nim opisanego. Wówczas rzuty prostokątne punktu math na proste zawierające boki danego trójkąta leżą na jednej prostej zwanej prostą Simsona.