Przeskocz do treści

Delta mi!

  1. obrazek

    Stereometria Co to jest?

    Sferostożki i inne cudaki

    Bryła to stworzenie, z którym większość z nas poznała się w szkole podstawowej i które było przez nas oswajane przez kolejne lata edukacji. Znamy bliżej różne rodziny brył, takie jak wielościany, graniastosłupy, bryły obrotowe, foremne, platońskie. Oczywiście, można produkować nowe stworzenia, łącząc czy tnąc "podstawowe" gatunki, a jedynym ograniczeniem jest nasza wyobraźnia.

  2. Gry, zagadki, paradoksy Mała Delta

    Ratujmy zdrowie króla!

    Król Chimeryk zaniemógł. Wezwał do swojego łoża trzech synów. „Czas mój się wypełnia, bo choroba moja straszna i lekarstwa na nią nie znam. Jedna jeszcze nadzieja została. Za siedmioma górami i siedmioma lasami mieszka stary pustelnik, który ma wiedzę wielką o wszelakich chorobach i sam rozmaite medykamenty przygotowuje sobie tylko znanymi sposobami. Synowie moi! W waszych rękach moje życie i ostatnia nadzieja na jego przedłużenie.”

  3. obrazek

    Wikipedia

    Rozeta z kościoła St-Jean-de-Malte w Aix-en-Provence

    Wikipedia

    Rozeta z kościoła St-Jean-de-Malte w Aix-en-Provence

    Planimetria Mała Delta

    Rozety

    Jednym z najbardziej charakterystycznych elementów architektury średniowiecznej, zwłaszcza gotyckiej, są rozety. Są to okrągłe okna z delikatną konstrukcją kamienną, których puste przestrzenie są najczęściej wypełnione witrażami. Pierwsze rozety pojawiają się już w kościołach romańskich; zamiast witrażami są wypełnione cienkimi płytkami kamiennymi, przepuszczającymi światło.

  4. Teoria liczb Mała Delta

    Kraina dwóch monet

    Wyobraźmy sobie, że trafiliśmy do dziwnego kraju, w którym jedynymi dostępnymi środkami płatniczymi są monety o nominałach 5 i 9. Formy płatności nie rozwinęły się na tyle, żeby płacić kartą lub czekiem, na domiar złego wybraliśmy się do cukierni, w której kasa jest zupełnie pusta i sprzedawca nie może wydać nam reszty...

  5. Planimetria Mała Delta

    Samą linijką można nakreślić okrąg...

    ...jeśli ma się 5 jego punktów. No, może trochę przesadziłem... Okręgu tak dosłownie nakreślić nie można, ale można narysować jego kolejnych kilka punktów, nawet gdy te kilka to np. 100 -- oczywiście, im większa będzie to liczba, tym dłużej będzie to trwało, bo rysować będziemy te punkty kolejno, po jednym.

  6. Różności Mała Delta

    Projekt Astro Izery

    Żyjemy w czasach, w których poznawanie Wszechświata przez obserwacje, czyli zwykłe oglądanie nieba, staje się coraz trudniejsze. To dość zaskakujące, bo przecież amatorski sprzęt astronomiczny jest względnie łatwo dostępny. Problemem jest jednak „zanieczyszczenie światłem”, które szczególnie w miastach rozjaśnia nocne niebo, uniemożliwiając nawet proste amatorskie obserwacje. Zatem, jeśli mieszkasz w mieście i chcesz zobaczyć prawdziwą czerń kosmicznych przestworzy, wybierz się do... lasu.

  7. Teoria liczb Mała Delta

    Liczby geometryczne

    Od najmłodszych lat każdy z nas poznaje świat liczb, zliczając zabawki, jabłka czy książki. Nikogo nie dziwi zatem przedstawienie liczby 5 jako pięciu kulek. Tylko czy takie przedstawienie może pomóc w odkrywaniu świata komuś, kto ukończył już przedszkole? Okazuje się, że tak – wystarczy uważne spojrzenie i wyobraźnia, a może nam przynieść nieoczekiwane spostrzeżenia.

  8. obrazek

    Astronomia Mała Delta

    Opowieści o podróżach w Kosmos

    Któż nie chciałby być jak pilot Pirx? Osadzona w bliskiej przyszłości (XXI, XXII wiek?) opowieść w stylu retro o przygodach pilota statków międzyplanetarnych rozwija wyobraźnię kolejnego pokolenia. Szczególnie interesujący jest opis technologii, z której korzysta Pirx...

  9. Różności Jak to działa?

    Nauka pieczenia

    Jeffrey spojrzał w kierunku piekarnika, gdzie apetycznie brązowiało kruche ciasto nadziewane jabłkami. Był pewien, że odkrył naukową metodę umożliwiającą otrzymanie ciasta idealnego: o strukturze cieniutkich płatków, delikatnego, ale chrupkiego.

  10. obrazek

    Mechanika Jak to działa?

    Fizyka tańca

    Co fizycy robią „po godzinach”? Różnorodność odpowiedzi na to pytanie jest pewnie taka jak w innych grupach zawodowych. Naukowcy mogą jednak mówić o swoich pasjach, używając języka „pracowego”. Tak właśnie powstał wykład poświęcony fizyce tańca, którym włączyłam się w cykl imprez Festiwalu Nauki i którego kilka urywków chciałabym Czytelnikom Delty przedstawić.

  11. Mechanika Jak to działa?

    Huśtawka

    Do dzisiejszego doświadczenia potrzebna będzie huśtawka. Jeszcze lepszy byłby długi, spuszczony z gałęzi sznur z poprzeczką na końcu. Każdy chyba umie rozhuśtać się. Ale czy zastanawialiście się kiedyś, dlaczego to jest możliwe i dlaczego wszyscy robią to w prawie identyczny sposób? Może jest to spowodowane naśladownictwem?

  12. obrazek

    Gry, zagadki, paradoksy Mała Delta

    Wieże Hanoi

    Legenda powiada, że gdy bóg Brahma po raz pierwszy poruszył czas, umieścił na jednej z trzech diamentowych igieł, umocowanych na wspólnej podstawce, 64 złote krążki. Na podstawce spoczywał krążek najszerszy, a nad nim lśniły pozostałe o coraz mniejszych średnicach. Bóg polecił mnichom z górskiej samotni, by bez spoczynku przekładali krążki, tak aby wszystkie znalazły się na drugiej diamentowej igle, z zachowaniem tego samego ułożenia. Gdy zadanie zostanie zakończone, nastąpi koniec pierwszego świata, a na następny, wskrzeszony przez Brahmę, wypadnie czekać wiele tysięcy lat...

  13. Gry, zagadki, paradoksy Mała Delta

    Numizmatyka dla zachłannych

    Wyobraźmy sobie następującą grę. Na stole w jednym rzędzie leży math monet o różnych nominałach. Dwoje graczy – Ania i Bartek – wykonuje na przemian ruchy, zaczyna Ania. Ruch polega na zabraniu jednej monety z lewego lub prawego końca rzędu. Wynikiem gry jest, oczywiście, suma nominałów monet zgromadzonych przez każdego z graczy. Jak powinna grać Ania, by uzyskać jak największą sumę, jeśli wie ona, że Bartek będzie grał optymalnie (tzn. będzie starał się zmaksymalizować swoją sumę)?

  14. obrazek

    Image processing by R. Nunes

    Wenus w naturalnych kolorach

    Image processing by R. Nunes

    Wenus w naturalnych kolorach

    Astronomia Mała Delta

    Wyznaczanie odległości, promienia orbity i rozmiarów Wenus

    Wielką przyjemność i satysfakcję sprawia obserwowanie przyrody. Nieporównanie większą – obserwowanie jej z poczuciem zrozumienia. Jednak największą odczuwa się chyba w trakcie samodzielnego jej poznawania. Jak wielką satysfakcję może sprawić wyznaczenie odległości do Wenus? Nie dowiesz się, jeśli nie spróbujesz tego dokonać. A warto, bo doświadczysz nie tylko satysfakcji badawczej...

  15. obrazek

    Gry, zagadki, paradoksy Mała Delta

    Tajemnica dworu Edensville

    W dniu naszego powrotu z Grenoble, gdzie przez dwa tygodnie pomagaliśmy miejscowej policji uporać się z problemem – z pozoru błahym, lecz o jakże przygnębiającym rozwiązaniu – znikających przydrożnych lamp gazowych, w mieszkaniu przy Baker Street 221B oczekiwał niezaniedbywalnej wielkości stos korespondencji...

  16. obrazek

    Stereometria Lekcja rysunku

    Lekcja 1 - Stella octangula

    Wydaje się, że w czasach szybkich komputerów, programów graficznych i innych gadżetów nie ma sensu zajmowanie się rysunkiem odręcznym. Równie dobrze jednak można by zrezygnować z nauki pisania i tabliczki mnożenia – są przecież odpowiednie edytory i kalkulatory. Zdarza się jednak, że rozwiązując jakieś zadanie, dobrze byłoby podeprzeć naszą wyobraźnię właśnie rysunkiem, a nie ma pod ręką supernowoczesnych narzędzi.

  17. Planimetria Mała Delta

    O sadzeniu drzew

    Girard DESARGUES, matematyk, architekt ogrodów, doradca kardynała Richelieu (a więc rówieśnik Atosa, Portosa i Aramisa) postawił kolegom ogrodnikom pytanie: Jak posadzić 10 drzew w dziesięciu rzędach po 3 drzewa w każdym rzędzie?

  18. Teoria liczb Mała Delta

    Jak znaleźć klucz?

    Każdy od czasu do czasu potrzebuje metody przekazania komuś pewnych wiadomości tak, żeby niepowołane osoby nie miały szans na ich przechwycenie. Począwszy od zabaw z kolegami na podwórku, a skończywszy na operacjach bankowych, wojskowych czy wykorzystujących dane osobowe – bez szyfrów po prostu nie da się żyć. Do zaszyfrowania danych zwykle potrzebny jest klucz – pewne słowo czy liczba, które najpierw kierują procesem tworzenia szyfru, a później pozwalają odbiorcy wiadomości ją odkodować. Osoby, które chcą porozumiewać się za pomocą szyfru, muszą najpierw uzgodnić klucz między sobą. I tu pojawia się problem: jak ustalić klucz, tak żeby nikt oprócz nas nie mó go poznać?

  19. Teoria liczb Mała Delta

    Geometryczne liczby

    Trzy kółeczka łatwo ułożyć w trójkąt foremny (czyli równoboczny), cztery w czworokąt foremny (czyli kwadrat), pięć w pięciokąt foremny itd. Można więc 3 uważać za liczbę trójkątną, cztery za czworokątną, pięć za pięciokątną itd. Rysunki poniżej pokazują, jak można, rysując kropki, określić inne liczby wielokątne.

  20. Astronomia Mała Delta

    Obserwacje planet pozasłonecznych

    Jeszcze dwadzieścia lat temu nie znaliśmy żadnych planet pozasłonecznych. Dzisiejsza technika pozwala nam nie tylko stwierdzić ich istnienie, ale także poznać bliżej ich naturę. Do tej pory naukowcy odkryli niemal pół tysiąca egzoplanet (taką nazwę nadano wszystkim planetom poza Układem Słonecznym).

  21. Mechanika Mała Delta

    Czy Michael Jordan umie latać?

    Ten legendarny koszykarz NBA miał przydomek flying, czyli „latający”. Bardzo często, atakując, wyskakiwał w górę, po nim – na tę samą wysokość – wyskakiwali często wyżsi obrońcy, on jednak potrafił poczekać aż opadną i dopiero wtedy, bez problemu, trafiał do kosza.

  22. Informatyka Mała Delta

    Roztańczone pchły

    W Bajtocji można spotkać wędrownych treserów pcheł. Pchły uczone są tańca, polegającego na wykonywaniu precyzyjnych skoków w rytm muzyki. Dokładnie wygląda to tak: treser układa na stole w rządku ponumerowane kolejno żetony. Na każdym żetonie, oprócz jego numeru, jest również napisany numer żetonu, na który powinna z niego skoczyć pchła – na każdym żetonie ten numer jest inny. Następnie treser ustawia po jednej pchle na każdym z żetonów i włącza muzykę. Na początku każdego taktu każda z pcheł wykonuje skok wprost na żeton, którego numer jest napisany na żetonie, na którym w danej chwili stoi.

  23. Mechanika Mała Delta

    Polowanie i fizyka

    Wyobraź sobie, że jesteś na polowaniu, ale takim trochę niezwyczajnym. W pewnym momencie spostrzegasz małpkę wiszącą na gałęzi. Celujesz więc do niej ze swojej broni palnej, ale ta broń też jest trochę niezwyczajna. Jest stara, czyni dużo huku i wyrzuca pocisk z prędkością dużo mniejszą niż prędkość dźwięku w powietrzu. Małpka usłyszy więc odgłos wystrzału dużo wcześniej, niż doleci do niej pocisk.

  24. Algorytmy Mała Delta

    O rozgrywkach ligowych

    W sporcie stosowane są różne systemy prowadzenia rozgrywek. Jednym z nich jest tzw.  system pucharowy, w którym zwycięzca meczu kwalifikuje się do dalszych gier, przegrany zaś odpada z turnieju. Aby system był bardziej sprawiedliwy, dokonuje się początkowego rozstawienia przeciwników, tak by teoretycznie najsilniejsi spotkali się jak najpóźniej.

  25. Światło Mała Delta

    Dyfrakcja na palcu

    Dyskusja o falowej bądź cząsteczkowej naturze światła to jedna z najważniejszych i najpłodniejszych debat w historii fizyki. Rozpoczęła się pracami Christiana Huygensa i Izaaka Newtona na przełomie XVII i XVIII wieku, i trwała, czasami żywsza, czasami wyciszona, do prac Einsteina i Plancka z początku zeszłego wieku.

  26. Planimetria Mała Delta

    Równanie Pitagorasa

    Pomysł tego artykułu powstał na lekcji matematyki w I klasie gimnazjum. Rozwiązywałem z uczniami zadanie z podręcznika wydanego przez Gdańskie Wydawnictwo Oświatowe: który z narysowanych trójkątów jest przystający do trójkąta math?

  27. Światło Jak to działa?

    Słupy na niebie

    Zdarzyło mi się zeszłorocznej zimy obserwować ciekawe zjawisko. Podczas jednej z najbardziej mroźnych nocy, a jednocześnie dość pogodnej, zauważyłem, że ze wszystkich jaśniejszych miejskich lamp ulicznych strzelają w górę słupy światła podobne trochę do smug wycelowanych pionowo silnych reflektorów.

  28. Astronomia Mała Delta

    Co dały zaćmienia Słońca?

    Do dziś całkowite zaćmienia Słońca budzą zainteresowanie nie tylko z powodu swojej efektowności. Rejestracja tzw. kontaktów Słońca i Księżyca (tj. momentów, gdy tarcze tych ciał są chwilowo styczne – zewnętrznie lub wewnętrznie) stwarza możliwość sprawdzania poprawności teorii ruchu ciał w Układzie Słonecznym. A co poza tym?