Przeskocz do treści

Delta mi!

Loading
  1. Zastosowania matematyki

    (Nie)sprawiedliwe wybory

    Ustalenie wspólnego stanowiska przez grupę ludzi wymaga często w pierwszym kroku wyboru metody podjęcia zbiorowej decyzji. Kluczowe stają się wówczas pytania: Jaka metoda jest sprawiedliwa? Jaka metoda najlepiej odzwierciedli preferencje członków grupy?

  2. obrazek

    Algebra

    Symetrie ciał i grupy: teoria Galois

    Poniższa opowieść była na tyle ważna dla młodego, zaledwie dwudziestoletniego, matematyka Évariste'a Galois, że poświęcił ostatni dzień przed pojedynkiem, aby spisać ją w liście do przyjaciela. Niestety, nie dostał od losu szansy na kontynuowanie swoich prac, ale jakiś czas po jego śmierci matematycy zrozumieli znaczenie jego pomysłów. Ślady teorii, z której zarysem Czytelnik zapoznać się może w dalszej części artykułu, odnaleźć można w wielu gałęziach współczesnej matematyki. Jej bezpośrednim następstwem jest wiele efektownych rozwiązań problemów, których ludzkość szukała przez setki lat: nierozwiązalność (przez pierwiastniki) równań wielomianowych stopnia 5 lub wyższego, niekonstruowalność pewnych wielokątów foremnych (cyrklem i linijką), a także niewykonalność klasycznych konstrukcji geometrycznych, czyli podwojenia sześcianu, trysekcji kąta i kwadratury koła.

  3. obrazek

    Rys. 1

    Rys. 1

    Planimetria Deltoid

    Łuki Talesa

    Odcinek AB widać z punktu C pod kątem ff , gdy ?ACB = ff: Z twierdzenia o kątach wpisanych wynika, że jeśli punkty C i D leżą na okręgu po tej samej stronie jego cięciwy AB; to widać ją z C i |D pod tym samym kątem (Rys. 1).

  4. Algebra

    Combinatorial Nullstellensatz w teorii liczb

    W Delcie 7/2017 przedstawiliśmy kilka "olimpijskich" zastosowań twierdzenia Combinatorial Nullstellensatz. Okazuje się, że zamiast "zwykłych" wielomianów wielu zmiennych możemy rozważać wielomiany o współczynnikach będących resztami z dzielenia przez pewną liczbę pierwszą |p; z dodawaniem i mnożeniem modulo p: Poniżej przedstawimy trzy klasyczne twierdzenia, których proste dowody są oparte na Combinatorial Nullstellensatz w wersji "resztowej". Twierdzenia te są szczególnie bliskie zastosowaniom olimpijskim.

  5. Geometria Drobiazgi

    Małe Wszechświaty

    Astrofizycy ostatnio twierdzą, że "Wszechświat jest płaski", co w ich żargonie oznacza, iż średnia krzywizna Wszechświata jest równa zeru (i tylko lokalnie jest zakłócana przez grawitację). Jeśli mają rację, to matematyka dowodzi, że Wszechświat przyjmuje jeden z 18 możliwych kształtów.

  6. Rachunek prawdopodobieństwa

    Rzuć monetą...

    Doświadczenie, polegające na wielokrotnym rzucaniu monetą (symetryczną lub nie) ma tę zaletę, że każdy ma jakieś wyobrażenia dotyczące wyników. Nietrudno na przykład uwierzyć, że stosunek liczby orłów Sn do liczby rzutów |n nie będzie się wiele różnił od p - prawdopodobieństwa otrzymania orła w pojedynczym rzucie.

  7. obrazek

    Rys. 1

    Rys. 1

    Planimetria Mała Delta

    Kąty i Okrąg

    Każdy zna twierdzenie o kącie zewnętrznym trójkąta: jest on równy sumie kątów wewnętrznych do niego nie przyległych (Rys. 1), co bierze się z faktu, że suma kątów przyległych jest równa sumie kątów trójkąta. Z twierdzenia tego wynika nietrudno twierdzenie o kącie wpisanym i środkowym: kąt wpisany jest równy 1 2 kąta środkowego opartego na tym samym łuku.

  8. obrazek

    Zastosowania matematyki

    W co grają kraje, eksploatując środowisko?

    4 września 1958 roku islandzki statek patrolowy ICGV Ægir próbował zatrzymać brytyjski kuter rybacki poławiający w strefie 12 mil morskich od brzegów Islandii, został jednak staranowany przez brytyjski okręt wojenny HMS Russell. To był pierwszy incydent pierwszej wojny dorszowej. Co było przyczyną serii konfliktów, w których przeciwko jednej z największych marynarek wojennych Europy stanęła licząca siedem okrętów patrolowych i jeden wodolot flota Islandii? Czego broniła tak zaciekle?

  9. obrazek

    wikipedia

    Dictostelium discoideum

    wikipedia

    Dictostelium discoideum

    Zastosowania matematyki

    Równania chemotaksji i wybuchy rozwiązań

    Patrząc z bardzo ogólnego punktu widzenia, całą obserwowalną przyrodę ożywioną i nieożywioną można przedstawić jako wzajemnie powiązane procesy, czyli funkcje, które chwilom przyporządkowują stany różnych obiektów wyrażone poprzez wartości liczbowe. Aby przewidywać przebieg rożnych procesów, tworzy się modele matematyczne, które określają w każdej chwili zmiany stanów procesów w zależności od samych stanów. Matematycznie zmianę funkcji opisuje jej pochodna (różniczka), która określa, jak wielkie są przyrosty ewentualnie spadki wartości funkcji w krótkich przedziałach czasu. Równania, których rozwiązaniami są owe procesy przyjmujące jakieś zadane stany początkowe, to równania różniczkowe zwyczajne...

  10. Statystyka

    O rybach i ufności

    W poprzednim numerze Delty przedstawiliśmy zgrabną metodę szacowania liczby ryb pływających w stawie. Przypomnijmy doświadczenie, na którym ta metoda się opierała: najpierw łowimy rybkę, potem rysujemy jej kreskę na ogonku, następnie na kartce zapisujemy liczbę kresek, jakie widzimy na ogonku trzymanej w ręce rybki, po czym wrzucamy ją z powrotem do stawu i całą procedurę powtarzamy n razy.

  11. obrazek

    Zastosowania matematyki

    Porządek w stochastycznym świecie

    Rozważymy dwie uporządkowane struktury, które są wynikiem optymalizacji pewnych deterministycznych wielkości: minimalizacji energii w stanach podstawowych oddziałujących cząstek oraz maksymalizacji wypłat w równowagach Nasha rywalizujących graczy. Zadajemy pytanie - czy porządek obecny w powyższych strukturach przetrwa stochastyczne zaburzenia zawsze obecne w rzeczywistych układach?


  12. obrazek

    industry.it4i.cz

    Zastosowania matematyki Co to jest?

    30 lat addytywnej metody Schwarza

    Gotów jestem założyć się, Czytelniku, że wcześniej o niej nie słyszałeś. Tymczasem pod tą mało medialną nazwą kryje się metoda, dzięki której współczesne superkomputery pracują pełną parą, prowadząc skomplikowane symulacje. Łączy ona w sobie algorytmiczną efektywność z fizyczną intuicją, a bez wglądu w jej matematyczny sens, być może, nigdy byśmy jej nie poznali.