Przeskocz do treści

Delta mi!

  1. Teoria liczb

    Matematyka jest jedna: Magia liczb

    Dotarliśmy do ostatniej części cyklu, w którym prezentujemy wybrane przykłady zaskakujących relacji pomiędzy różnymi, pozornie bardzo odległymi, obszarami matematyki. Nie wypada jednak zakończyć bez poświęcenia należytej uwagi dziedzinie teorii liczb. Jak bowiem matematyka nazywana jest często królową nauk, tak o teorii liczb mówi się często jako o królowej matematyki. A królowa ma, oczywiście, wielu służących.

  2. Geometria Co to jest?

    Iloczyn skalarny

    Jednym z podstawowych wzorów trygonometrycznych jest twierdzenie kosinusów podające zależność między bokami trójkąta a jednym z jego kątów:  2 2 2 c = a + b − 2ab cosC: Na formułę tę można patrzeć jako na uogólnienie twierdzenia Pitagorasa (do którego sprowadza się, gdy kąt C jest prosty, czyli cosC = 0):

  3. obrazek

    wikipedia

    Alfred Tarski (1901-1983)

    wikipedia

    Alfred Tarski (1901-1983)

    Planimetria

    O stopniu równoważności wielokątów

    W artykule tym pragnę omówić pewne pojęcia, należące całkowicie do zakresu geometrii elementarnej, a dotąd niemal wcale nie zbadane. Jak wiadomo, dwa wielokąty W i V nazywamy równoważnymi, wyrażając to wzorem: |W ∼V; jezeli dają się one podzielić na jednakową ilość wielokątów odpowiednio przystających...

  4. Algebra Czegóż dawniej uczono

    Twierdzenie Sturma

    Rozważamy wielomian w o współczynnikach rzeczywistych stopnia n: Wiadomo, że wielomian taki ma n pierwiastków zespolonych; niektóre z nich (czasami wszystkie) są, być może, rzeczywiste. Twierdzenie Sturma pozwala obliczyć liczbę pierwiastków rzeczywistych wielomianu w należących do wybranego przedziału ⟨a;b⟩: Oczywiście, odpowiedź na to pytanie możemy uzyskać, stosując metodę badania funkcji wielomianowej w ; znaną z analizy matematycznej. Metoda Sturma jest czysto algebraiczna, nie stosuje metod analizy matematycznej.

  5. obrazek

    Gwoli precyzji ustalmy, że trzymając przed sobą zetknięte połówki przeciętej bryły obrotowej (prawą i lewą), obracamy prawą z nich ruchem do siebie.

    Gwoli precyzji ustalmy, że trzymając przed sobą zetknięte połówki przeciętej bryły obrotowej (prawą i lewą), obracamy prawą z nich ruchem do siebie.

    Stereometria Mała Delta

    Sferostożki więcej i bardziej

    Taka sobie niewinnie wyglądająca bryłka. Ot, powstała z obrotu kwadratu dookoła jego przekątnej, przecięcia tego, co powstało, na dwie identyczne części (wzdłuż płaszczyzny kwadratu), przekręceniu połowy o  ○ 90 i doklejeniu do drugiej części (czekającej w tym czasie w bezruchu). Szczęśliwa całość - sferostożek (ang. sphericon).

  6. Logika Co to jest?

    Czy trzeba dowodzić rzeczy oczywistych?

    Każda nauka ścisła ma własne metody potwierdzania swoich tez. Dla większości z nich weryfikacja twierdzeń polega na konfrontacji z rzeczywistością. Matematyka jest jedyną z tych nauk, w której owa rzeczywistość nie jest ostateczną (ani jakąkolwiek) metodą sprawdzania zdań aspirujących do wzbogacenia zasobu wiedzy matematycznej. Weryfikatorem twierdzeń jest dowód. Mowa tu o tzw. matematyce czystej lub teoretycznej; zauważmy jednak, że fizyczna rzeczywistość weryfikuje stosowalność instrumentów matematycznych, nie ich wartość matematyczną.

  7. obrazek

    Dwunastościan gwiaździsty mały

    Dwunastościan gwiaździsty mały

    Stereometria

    Wielościany gwiaździste

    Jeśli przy definiowaniu wielokąta zrezygnujemy z warunku, aby łamana tworząca go była zwyczajna, otrzymamy nową klasę wielokątów foremnych, tzw. gwiaździstych.

  8. obrazek

    prof. dr Roman Sikorski (1920 - 1983) - polski matematyk, profesor Uniwersytetu Warszawskiego i Instytutu Matematycznego PAN.

    prof. dr Roman Sikorski (1920 - 1983) - polski matematyk, profesor Uniwersytetu Warszawskiego i Instytutu Matematycznego PAN.

    Analiza Co to jest?

    Czy liczby rzeczywiste są rzeczywiste?

    Liczby naturalne są niewątpliwie naturalne. Liczby całkowite niewątpliwie zasługują na nazwę całkowite. Liczby wymierne należałoby możne nazywać liczbami mierzącymi lub wymierzającymi, bowiem wszystkie pomiary wykonujemy w praktyce w liczbach wymiernych, zresztą nie tylko pomiary: wszelkie rachunki na konkretnych liczbach wykonywane są w praktyce wyłącznie w obrębie liczb wymiernych. Po co więc wprowadzać szersze, lecz znacznie trudniejsze pojęcie liczb rzeczywistych, skoro liczby wymierne wystarczają w rachunkach? Definicja liczb rzeczywistych nastręcza zawsze pewne trudności, wskutek tego w podręcznikach szkolnych jest raczej przemycana, niż precyzyjnie formułowana.

  9. Geometria różniczkowa

    Jak pryska bańka mydlana?

    W ostatnich kilkunastu latach na pograniczu geometrii różniczkowej i teorii równań różniczkowych rozrósł się nowy, pokaźny dział matematyki, poświęcony badaniom krzywych i powierzchni, które poruszają się zgodnie z jakimś określonym przepisem, zmieniając wraz z upływem czasu swój charakter i własności. Różne punkty mogą przy tym poruszać się z różnymi prędkościami, wyznaczonymi przez rozmaite geometryczne charakterystyki krzywej czy powierzchni...

  10. Matematyka Deltoid

    Z armaty do muchy

    Poniższe zadania łączy to, że do rozwiązania każdego z nich można użyć pewnego Bardzo Znanego Twierdzenia, udowodnionego całkiem niedawno. Oczywiście to, że można strzelać z armaty do muchy nie oznacza, że zawsze trzeba...

  11. Teoria liczb

    Reszta jest dziełem człowieka, czyli Fermat i inni

    Nie ma słynniejszego twierdzenia niż Wielkie Twierdzenie Fermata (WTwF) i tego nie zamierzam tu dowodzić. Zacznę po prostu od sformułowania faktu, który od 1995 roku jest rzeczywiście twierdzeniem za sprawą Andrew Wilesa, a wcześniej przez około trzy i pół wieku był hipotezą zajmującą głowy największych matematyków i rzesze amatorów...

  12. Planimetria

    Od kwadratu

    Rozpatrzmy dowolny trójkąt oraz cztery kwadraty zbudowane w sposób przedstawiony na rysunku 1. Wówczas zaznaczone kolorem trzy odcinki, łączące odpowiednie wierzchołki kwadratów oraz środek najniższego kwadratu, przecinają się w jednym punkcie.

  13. Teoria grafów Drobiazgi

    Cykle Hamiltona na wielościanach foremnych

    Zadanie 44 w książce 100 zadań Hugona Steinhausa dotyczy zamkniętych dróg po krawędziach wielościanu foremnego, które przechodzą dokładnie jeden raz przez każdy wierzchołek, czyli złożonych z krawędzi cykli Hamiltona. Chodzi o to, aby znaleźć wszystkie kształty takich cykli i policzyć, ile ich jest (z dokładnością do położenia) dla każdego wielościanu foremnego.