Przeskocz do treści

Delta mi!

  1. Kombinatoryka

    Kombinatoryka i nieskończoność

    Kombinatoryka zajmuje się własnościami zbiorów skończonych, w szczególności zagadnieniem zliczania elementów takich zbiorów. Czy może zatem w kombinatoryce znaleźć się miejsce dla nieskończoności? Okazuje się, że tak – pokażę jedno z takich zastosowań nieskończoności: funkcje tworzące...

  2. Stereometria Kącik przestrzenny

    O pożytku ze sfery wpisanej

    W tym kąciku chcielibyśmy powrócić do pewnych własności sfery wpisanej w czworościan, o których pisaliśmy w kąciku 2 o najmocniejszym twierdzeniu stereometrii (Delta 3/2010). Okazuje się, że można je wykorzystać do udowodnienia faktów pozornie niezwiązanych ze sferą wpisaną.

  3. Geometria

    Słowa, słowa, słowa...

    Słowa, którymi będziemy się zajmowali, będą napisami złożonymi z liter jednego lub kilku zbiorów (na początek przyjmijmy, że zbiory są dwa – jeden zawiera małe litery łacińskie, a drugi duże) o tej własności, że dwie jednakowe litery umieszczone po kolei będą znikały. Napis, w którym wszystko znikło (czasem i taki jest potrzebny), będzie oznaczany 1.

  4. Gry, zagadki, paradoksy Wielkie granie

    Rozważmy Masterminda

    Gra Mastermind jest rozrywką głównie dla gracza odgadującego. Przypomnijmy: musi on ustalić, jaki kod (ciąg czterech kolorowych szpilek) ułożył przeciwnik, posiłkując się odpowiedziami otrzymywanymi na zadawane pytania. Pytania muszą mieć postać „Jak bardzo kod przypomina ciąg X?”, zaś odpowiedzią są dwie liczby: trafień właściwych kolorów na właściwych pozycjach oraz trafień kolorów na pozycjach niewłaściwych (odpowiednio: trafienia celne i niecelne; te pierwsze będziemy też nazywać po prostu trafieniami). Oczywiście chodzi o to, by odgadnąć kod jak najszybciej.

  5. obrazek

    Geometria Co to jest?

    Dziewięć twarzy płaszczyzny rzutowej

    W Delcie 6/2011 artykuł Marii Donten-Bury o płaszczyźnie rzutowej został poprzedzony przedstawieniem sześciu jej (płaszczyzny, nie Marysi) postaci, pod jakimi daje się nam ona zaobserwować. Wobec tego, że postacie te są bardzo różnorodne, nasunąć się może wątpliwość, czy faktycznie wszystkie są wcieleniami tego samego matematycznego obiektu. Poniżej jest przedstawiony sposób, jak tę wątpliwość można rozstrzygnąć.

  6. obrazek

    Évariste Galois

    Évariste Galois

    Algebra

    Pojedynek, symetrie i potwór – klasyfikacja grup prostych

    30 maja 1832 roku w Paryżu zginął w pojedynku młody matematyk, Evariste Galois. Nie ma pewności, czy pojedynek ten miał podłoże polityczne, czy też Galois bronił honoru pewnej młodej damy. W pożegnalnym liście poprosił on, by jego notatki wysłać Jacobiemu albo Gaussowi. Żaden z tych wielkich matematyków nigdy nie zobaczył jednak zapisków Galois.

  7. Gry, zagadki, paradoksy

    Problem kapeluszy

    Rozważmy następujący problem, zwany problemem kapeluszy (ang. hat problem). Do pokoju wchodzi math osób i każdej z nich losowo zostaje nałożony niebieski lub czerwony kapelusz. Każdy widzi kapelusze pozostałych osób, ale nie widzi swojego. Żadna komunikacja nie jest dozwolona, z wyjątkiem ustalenia strategii przed rozpoczęciem gry...