Przeskocz do treści

Delta mi!

  1. Analiza Drobiazgi

    Wielomiany Lagrange’a

    Joseph Louis Lagrange (1736--1813) był ogromnie zniesmaczony ciągle nieudanymi próbami ścisłego zdefiniowania koniecznego dla zastosowań matematyki pojęcia pochodnej funkcji. Rzecz udawała się właściwie tylko dla wielomianów.

  2. Geometria

    Wzór Eulera i balony

    Polski namiot na francuskim Festiwalu Nauki był tak pełen gości, że miejsce dla jego matematycznej części życzliwie zostało ofiarowane przez Jeana Brette’a i jego kolegów w namiocie Pałacu Odkryć.

  3. Analiza

    Analiza niestandardowa

    W matematyce, z jaką spotykamy się w szkole i na uniwersytecie, linię prostą identyfikuje się ze zbiorem punktów, w którym współrzędnymi są liczby rzeczywiste. Istnieje jednakże argument przeciw takiemu konkretnemu utożsamieniu, który opiera się na tym, iż nieskończenie wiele własności linii prostej nie może być ani dowiedzionych, ani obalonych za pomocą aksjomatów używanych w teorii mnogości (tzw. aksjomatów Zermelo–Fraenkla).

  4. Teoria liczb Ogródek Gardnera

    Jaka to liczba?

    Na ogół matematycy nie są ulubionymi gośćmi na przyjęciach. Poprzedza nas reputacja nudziarzy, zanurzonych myślami w definicjach i twierdzeniach. A jednak możemy użyć naszej wiedzy, by oczarować zebranych magicznymi trikami, opartymi na własnościach matematycznych. Może przy okazji ktoś zainteresuje się matematyką?

  5. Planimetria Ogródek Gardnera

    Lehmus, Steiner, Gardner

    Powszechnie znany jest fakt, że w trójkącie równoramiennym dwie dwusieczne mają równe długości, podobnie jak dwie wysokości i dwie środkowe. Naturalne jest pytanie: a odwrotnie, czy równość dwóch ze wspomnianych wielkości gwarantuje równoramienność trójkąta?

  6. Teoria grafów

    Największa liczba na świecie

    Ludzie od niepamiętnych czasów prześcigali się w biciu rekordów w najprzeróżniejszych dziedzinach, od czysto sportowych (szybciej, wyżej, mocniej), poprzez cywilizacyjne (wyższe budowle, większe samoloty, szybsze komputery), aż po całkiem absurdalne, żeby nie powiedzieć głupie.

  7. obrazek

    Wikipedia

    Grigorij Jakowlewicz Perelman

    Wikipedia

    Grigorij Jakowlewicz Perelman

    Topologia

    Hipoteza Poincarégo

    11 listopada 2002 roku Grigorij Jakowlewicz Perelman, geometra pracujący w Petersburskim Oddziale Instytutu Matematycznego im. Stiekłowa przy Fontance 27, udostępnił w Internecie 40-stronicową pracę pod tytułem „Formuła entropii dla potoku Ricciego i jej zastosowania geometryczne”. Czwartą stronę suchego i najeżonego fachowymi terminami wprowadzenia kończy zdanie:
    Wreszcie, w rozdziale 13, podajemy krótki szkic dowodu hipotezy geometryzacyjnej.

  8. Algebra Mała Delta

    Można zacząć od banknotu

    Na ile sposobów można przykryć banknotem prostokąt o tych samych rozmiarach? xxx Każdy od razu zgadnie, że na cztery sposoby: do góry orłem, przy czym orzeł może być do dołu lub do góry nogami, i podobnie na dwa sposoby królem do góry (choć na banknocie nie widać jego nóg).

  9. Planimetria Deltoid

    Dobrze się składa

    Jednokładności były tematem styczniowego deltoidu. Jak każde przekształcenia, jednokładności można składać. Mimo, że wynik takiego złożenia nie musi być jednokładnością, to jednak jednokładności składają się dobrze.