Przeskocz do treści

Delta mi!

  1. Rachunek prawdopodobieństwa

    W sieci Bayesa

    Rozpoczniemy od żartobliwej, acz pouczającej historyjki: podczas rozmowy dwóch stałych bywalców lokalnego baru jeden z nich mówi do drugiego "Noszenie kaloszy jest bardzo niezdrowe; ilekroć budzę się rano i mam je na nogach, boli mnie głowa"...

  2. obrazek

    Zastosowania matematyki

    Mathematica i fraktale

    Wolfram Mathematica to popularny, nie tylko wśród studentów matematyki, system obliczeniowy, który umożliwia rozwiązywanie zadań z dziedzin, takich jak matematyka, fizyka czy ekonomia. Mamy tu oczywiście rachunek różniczkowy i całkowy, algebrę i statystykę, lecz także najróżniejsze metody z zakresu od matematyki czysto teoretycznej aż po zastosowania w data science, biznesie, inżynierii czy medycynie. Łącznie mamy prawie 5000 wzajemnie zintegrowanych, wbudowanych funkcji. Mathematica używa własnego języka programowania Wolfram Language, który cechuje się wydajnym operowaniem na listach. Zaletą systemu Mathematica jest także przyjazny interfejs z rozbudowaną dokumentacją każdej z funkcji, a także szerokie możliwości interaktywnej wizualizacji obliczeń.

  3. Sztuczna inteligencja Nowe pomysły

    Sztuczna inteligencja

    • Raj na Ziemi jednak istnieje. Znalazła go sztuczna inteligencja.
    • Sztuczna inteligencja pomoże w walce z bioterroryzmem. Nauczyła się rozpoznawać bakterie wąglika.
    • Potężna kasta zawodowa może zniknąć bez śladu. Sztuczna inteligencja bez trudu pokonała setkę ekspertów.
    • Zaleje nas spam. Sztuczna inteligencja złamała system weryfikacji CAPTCHA.

    Takie i podobne tytuły pojawiają się codziennie, zarówno w czasopismach, na stronach internetowych, jak i usłyszeć można je w telewizji czy w radiu. A to nie wszystko...

  4. Planimetria Deltoid

    Wysokości czworokąta

    Wysokością czworokąta nazwijmy prostą przechodzącą przez środek jego boku i prostopadłą do boku przeciwległego. W niektórych czworokątach wszystkie cztery wysokości przecinają się w jednym punkcie - ortocentrum czworokąta. Przykładowo kwadrat ma ortocentrum, a romb niebędący kwadratem nie ma.

  5. Teoria liczb Mała Delta

    Resztki

    Skończyłam! - krzyknęła triumfalnie Agatka do swojego brata, Bartka. Dziewczynka regularnie domaga się od starszego chłopca rozmaitych ciekawostek matematycznych, których ten dowiaduje się w liceum...

  6. obrazek

    Sztuczna inteligencja

    Co widzą głębokie sieci neuronowe?

    W ciągu ostatnich kilku lat świat naukowo-techniczny nauczył się uczyć tzw. głębokie sieci neuronowe rozpoznawania treści obrazów. Rezultaty są spektakularne: dobrze nauczony model potrafi znaleźć na obrazku wszystkie zwierzęta i rozróżnić ich gatunki, przerobić zwykłe zdjęcie tak, żeby wyglądało na namalowane przez Picassa, czy domalować brakujący kawałek przedmiotu, którego nigdy wcześniej "nie widział". A wszystko opiera się na prostym przepisie: weź model matematyczny (nieskomplikowany pojęciowo, ale o wielkiej liczbie parametrów), dodaj jak najwięcej mocy obliczeniowej (w praktyce kart graficznych), poczekaj.

  7. Gry, zagadki, paradoksy

    Jak uczciwie wygrywać w Blackjacku?

    Czy można ograć kasyno? Nałogowi gracze zastanawiają się nad tym problemem od dawna. Wszystkie gry w kasynie mają ujemną wartość oczekiwaną dla klienta. Przynajmniej tak się ludziom wydawało aż do lat 60., kiedy ukazało się kilka książek o tym, jak można, stosując odpowiednią strategię, uzyskać dodatnią wartość oczekiwaną w grze Blackjack. To ogromnie spopularyzowało grę i paradoksalnie okazało się korzystne dla branży hazardowej. Mechanizm został przedstawiony w filmie "21", jednak bez żadnych szczegółów. W tym artykule przedstawię dokładniej, jak ta strategia działa.

  8. Planimetria Deltoid

    Pasujemy do siebie!

    W wielu zadaniach, w których występują kąty lub ich sumy, przydatne bywa przeniesienie pewnych figur tak, by kąty te znalazły się obok siebie. Szczególnie wygodne jest to wtedy, gdy suma pewnych kątów równa jest np. |90○ lub |360○; a także, gdy niektóre z danych odcinków są równej długości.

  9. obrazek

    Rys. 1 Przykładowa Hydra.

    Rys. 1 Przykładowa Hydra.

    Logika

    Jak radzić sobie z Hydrą?

    Drodzy Poszukiwacze Przygód, witam Was na kolejnym szkoleniu. Dzisiaj nauczymy się jak rozpoznawać, znajdować i radzić sobie w boju z Hydrą. Hydry to paskudne stworzenia, zamieszkujące świat grafów. Niech Was nie zmyli rysunek obok. Zobaczcie, jak przerażająco on wygląda. Hydry to bestie, które tylko upodobniają się do drzew, aby Was zmylić! Tam, gdzie niektórzy z Was dostrzegają korzeń, znajduje się tułów bestii. Tam, gdzie wydają się być liście, są głowy naszego stwora. Krawędzie to szyje, a wierzchołki wewnętrzne to zgięcia.

  10. Planimetria

    Przesuwanie w zadaniach olimpijskich

    W tym artykule omówimy pewną bardzo pożyteczną technikę - tzw. przesuwanie. Polega ona na tym, że niektóre obiekty przesuwamy o pewien wektor i udowadniamy, że teza zadania jest niezmiennicza ze względu na wykonanie tej operacji. Ta metoda pozwala na sprowadzenie rozwiązywanego zadania do znacznie prostszego. Bardzo często ten prostszy przypadek ma jakiś rodzaj symetrii, z której łatwo wywnioskować tezę. Zanim przejdziemy do rozwiązywania zadań, odnotujmy dwie proste własności opisanej operacji.

  11. Stereometria

    Wpisywanie w przestrzeni

    W poprzednim numerze przedstawiliśmy cykl wzajemnie wpisanych trójkątów i dwa wzajemnie wpisane pięciokąty. To było na płaszczyźnie. A teraz będzie przykład wzajemnego wpisania w przestrzeni trójwymiarowej.

  12. Teoria liczb

    Złociaków nigdy dosyć

    Wyobraźmy sobie, że trafiliśmy do dziwnego kraju, w którym jedynymi dostępnymi środkami płatniczymi są monety o nominałach |a i b: Formy płatności nie rozwinęły się na tyle, żeby płacić kartą lub czekiem, na domiar złego wybraliśmy się do cukierni, w której kasa jest zupełnie pusta i sprzedawca nie może wydać nam reszty. Nie chcąc tracić swoich złociaków, rozglądamy się za pysznościami w cenach |a + a;a + b;xa + yb ::: Niektórych kwot, oczywiście, nie daje się uzyskać z nominałów  a i |b; a niektóre można otrzymać na wiele sposobów.

  13. Zastosowania matematyki

    Programowanie liniowe w geometrii

    Proste do zdefiniowania i zrozumienia problemy geometryczne często są trudne do rozwiązania i wymagają użycia skomplikowanych algorytmów. Weźmy, na przykład, zadanie polegające na znalezieniu największego okręgu, który możemy zmieścić w wielokącie. Środek tego okręgu nazywany jest środkiem Czebyszewa. Jeżeli mamy do czynienia z dowolnie wybranym trójkątem bądź wielokątem foremnym, środek Czebyszewa znajduje się w punkcie przecięcia dwusiecznych jego dwóch dowolnych kątów. Zagadnienie staje się o wiele bardziej skomplikowane, gdy weźmiemy pod uwagę dowolny, nieregularny wielokąt.