Przeskocz do treści

Delta mi!

  1. Algebra Co to jest?

    Liczby zespolone i kwaterniony

    Tak jak problemy praktyczne prowadzą do równań, tak równania prowadzą czasem do nowych rodzajów liczb. Ambitny kmieć z czasów Mieszka I, będący właścicielem trzech krów i marzący o nabyciu (lub zdobyciu) dodatkowych sztuk bydła tak, by stać się szanowanym posiadaczem tuzina krów, musiał niewątpliwie rozwiązywać zadanie matematyczne, które dziś zapisujemy równaniem 3 + x = 12: Gdy zamienimy występujące tu liczby miejscami, otrzymamy równanie x + 12 = 3; które "nie da się rozwiązać": gołym okiem widać, że wśród liczb, za pomocą których zwykliśmy liczyć krowy (czyli liczb naturalnych), nie znajdzie się żadna, która by spełniała to równanie...

  2. Teoria liczb

    Od Prouheta–Tarry'ego–Escotta do Thuego–Morse'a

    Do jednych z najstarszych problemów w historii matematyki należy niewątpliwie zaliczyć równania diofantyczne, czyli równania o dziedzinie rozwiązań ograniczonej do liczb całkowitych. Obecną nazwę zawdzięczają one Diofantosowi, greckiemu matematykowi żyjącemu w III wieku naszej ery w Aleksandrii. Swoje rozważania na temat takich równań Diofantos zawarł w serii ksiąg pod tytułem Arytmetyka. Studiując jedną z nich, Pierre de Fermat - żyjący w XVII wieku francuski prawnik i matematyczny samouk - uznał, że pewne zawarte w niej równanie nie może mieć rozwiązań, o czym raczył poinformować przyszłych czytelników w słynnej uwadze, zamieszczonej na marginesie (czytanej przezeń książki oraz niniejszego artykułu).

  3. Stereometria

    Czy Ziemia jest płaska? A może jednak?

    W artykule Czy Ziemia jest płaska (Delta 4/2016) pokazaliśmy, że sfera (będąca uproszczonym modelem powierzchni Ziemi) nie jest płaska, to znaczy nie daje się podzielić na fragmenty, z których każdy byłby izometryczny z pewnym fragmentem płaszczyzny. Przypomnijmy, że ta cecha odróżnia sferę od powierzchni bocznych walca i stożka. Pójdźmy więc dalej - czy jest możliwa taka gładka deformacja sfery, aby uzyskać powierzchnię płaską?

  4. Rachunek prawdopodobieństwa Deltoid

    Prawdopodobieństwo geometryczne

    Rozmaite zagadnienia można wygodnie i ładnie ilustrować geometrycznie. Jeśli wyniki doświadczenia losowego dają się zinterpretować jako punkty pewnego obszaru i każdy wynik jest jednakowo prawdopodobny, to prawdopodobieństwo określonego zdarzenia można wyznaczyć jako stosunek miary (pola, objętości etc.) odpowiadającej mu części obszaru do miary całości.

  5. obrazek

    Paolo Ruffini (1765-1822)

    Paolo Ruffini (1765-1822)

    Algebra

    Równania algebraiczne

    Równania algebraiczne, czyli takie, które można zapisać, przyrównując wielomian do zera, intrygowały ludzi od bardzo dawna. Rozwiązywaniem równań zajmowano się już w czasach starożytnych. W szkole uczą nas, jak rozwiązywać równania liniowe i kwadratowe, to jest takie, w których występuje funkcja liniowa (wielomian stopnia pierwszego) albo funkcja kwadratowa (wielomian stopnia drugiego). Matematycy włoscy podali w XVI wieku wzory na pierwiastki równań stopnia trzeciego i czwartego. A co z równaniami wyższych stopni?

  6. obrazek

    wikipedia

    Jacob Bernoulli (1654 - 1705)

    wikipedia

    Jacob Bernoulli (1654 - 1705)

    Rachunek prawdopodobieństwa

    Regularność przypadku

    Wbrew pozorom tytuł niniejszego tekstu nie jest efektem zestawienia dwóch przypadkowych słów; nawet zupełnie przypadkowe przypadki mogą zdradzać pewne regularności i fakt ten wcale ich przypadkowości nie przeczy. Przypadkiem ich praktycznego zastosowania są średniowieczne tablice do gry w kości; opisane w nich zasady faworyzują jedną ze stron w sposób na tyle delikatny, że oszukiwana strona wcale się taką nie czuje...

  7. obrazek

    wikipedia

    Carl Friedrich Gauss (1777-1855)

    wikipedia

    Carl Friedrich Gauss (1777-1855)

    Algebra Co to jest?

    Liczby zespolone i kwaterniony

    Rozwiązywanie równań wymuszało poszerzenie zasobu liczb, jakimi się posługiwano. Równanie x + 3 = 12 można było rozwiązać, posługując się najnaturalniejszymi liczbami, zwanymi zresztą naturalne, ale równanie |x + 12 = 3 wymagało rozszerzenia ich zasobu do liczb całkowitych. Wyjście poza obręb równań pierwszego stopnia pokazało, że do rozwiązania np. równania  2 |x − 2 = 0 nie wystarczą nie tylko liczby całkowite, ale nawet wszystkie liczby wymierne, czyli ułamki a/b zbudowane z liczb całkowitych. Aby uzyskać rozwiązanie, do liczb wymiernych trzeba dołączyć nowe liczby, a wśród nich liczbę niewymierną  -- √ 2:

  8. Stereometria Drobiazgi

    Brzydka prawda

    Wielościan wypukły, którego ściany są jednakowymi wielokątami foremnymi, może mieć ściany trójkątne, czworokątne lub pięciokątne. Ostatnie dwa przypadki realizują się tylko w postaci sześcianu i dwunastościanu...

  9. Kombinatoryka

    Teoria grup w kombinatoryce

    Ten artykuł będzie poświęcony zliczaniu różnych kolorowań obiektów, które podlegają symetrii. Wyobraźmy sobie, że Kalina chciałaby pokolorować rogi kwadratu za pomocą m kolorów. Ile różnych figur może w ten sposób otrzymać?

  10. Planimetria Mała Delta

    Inwersja w różnych metrykach

    Wiele przedmiotów zawdzięcza swe istnienie kompozycji dwóch pozornie niewspółistniejących ze sobą idei. Louis Braille połączył koncepcję zapisu graficznego, czyli odczytywanego za pomocą wzroku, ze sposobem zapisywania wiadomości zaprojektowanym dla ludzi niewidomych, którzy korzystają ze zmysłu dotyku. W rezultacie powstał alfabet dla niewidomych, który można odczytać także za pomocą wzroku. Podobnie narodził się pomysł na zbadanie obrazów inwersyjnych w różnych metrykach...

  11. obrazek

    Początkowe ustawienie w grze Hexapawn

    Początkowe ustawienie w grze Hexapawn

    Gry, zagadki, paradoksy Mała Delta

    Hexapawn, czyli czego można nauczyć pudełka

    Zamiast analizować, czy gra jest sprawiedliwa, czy nie, zamiast szukać najlepszych strategii graczy, można stworzyć pewną maszynę, która część tej pracy wykona za nas. Trzeba jej objaśnić zasady, a potem z nią grać, niekoniecznie najlepiej - w końcu jeszcze nie przeanalizowaliśmy gry. Maszyna, grając, zapamiętując i wyciągając wnioski z przegranych oraz wygranych (co śmiało można zakwalifikować jako uczenie się), prędzej czy później zorientuje się, jak grać możliwie najlepiej, a więc ogrywać nas, o ile to tylko możliwe.

  12. Gry, zagadki, paradoksy Mała Delta

    Matematyka wedyjska

    "Matematyka wedyjska" to umowna nazwa zbioru algorytmów, które można zastosować, aby rozwiązać pewne rachunkowe problemy. Reguły te zostały sformułowane w XX wieku przez hinduskiego duchownego Bharatiego Kriszna Tirtha, który twierdził, że są one zapisane w hinduskich świętych księgach, Wedach.

  13. Teoria liczb

    Jeszcze jeden (elementarny) dowód rozbieżności szeregu odwrotności liczb pierwszych

    W tym krótkim artykule autorzy chcą zaprezentować zwięzły i piękny w swej prostocie dowód rozbieżności szeregu odwrotności liczb pierwszych. Fakt ten można udowadniać, razem z innymi fundamentalnymi i bardziej wyrafinowanymi twierdzeniami teorii liczb przez cały semestr przedmiotu Teoria Liczb, na Wydziale MIM UW, ale można go również wytłumaczyć w sposób elementarny.

  14. obrazek

    Geometria Mała Delta

    Tam, gdzie matematyka, sztuka i magia łączą swoje siły, czyli słów kilka o origami

    Mówi się, że origami powstało dwa tysiące lat temu wraz z wynalezieniem papieru. W tym kontekście wydaje się zaskakujące, że początek odkrywania matematyki stojącej za składaniem papieru przypada dopiero na lata osiemdziesiąte zeszłego stulecia. Dziś gałąź nauki zwana origami obliczeniowe (ang. computational origami) rozwija się bardzo prężnie.

  15. Geometrie nieeuklidesowe Mała Delta

    Geometria dziewięciu punktów

    Czysty zeszyt, cyrkiel, linijka, kątomierz, liniuszek - standardowy szkolny ekwipunek lekcji geometrii. Ale istnieją również inne geometrie, w których do konstrukcji figur nie jest potrzebne żadne oprzyrządowanie. Jedną z nich jest geometria dziewięciu punktów, gdzie bez linijki czy cyrkla można "konstruować" całkiem dokładnie koła, trójkąty i inne figury.