Przeskocz do treści

Delta mi!

  1. Stereometria Drobiazgi

    Wielościan w zeszycie

    Prawie każdy wielościan ma talię (to wśród nich jest nawet częstsze niż u ludzi!), czyli pewien jego płaski przekrój ma obwód mniejszy od sąsiednich (dokładniej: niewielka zmiana płaszczyzny tnącej daje wielokąt o większym obwodzie - a bardziej po ludzku: nałożona w takim miejscu gumka recepturka nie zsunie się). Dla sześcianu taką talią jest jego przekrój będący sześciokątem foremnym (narysuj ją!).

  2. obrazek

    Planimetria Deltoid

    Niby nic

    W dowolnym trójkącie odcinek łączący środki dwóch boków jest równoległy do trzeciego boku i dwukrotnie od niego krótszy. Ten prosty fakt okazuje się zadziwiająco przydatny.

  3. Gry, zagadki, paradoksy

    Złodziej strategii

    Jedna z rzeczy, które trudno wytłumaczyć niematematykom, to dowody niekonstruktywne. W takim dowodzie autorzy dochodzą do wniosku, iż pewien obiekt matematyczny istnieje, często wiedząc o nim bardzo mało. Dzieje się tak dlatego, że stwierdzamy istnienie takiego obiektu, nie próbując go skonstruować, tylko powołując się na inne fakty. Jednym z najprostszych przykładów jest dowód przez "kradzież strategii", który pokażę na przykładzie prostej gry.

  4. Statystyka

    Szansa na sukces

    Metoda probabilistyczna gościła już na łamach Delty (np. w numerach 12/2006 i 4/2015), byłoby jednak nieprawdopodobnie głupio pominąć ją w numerze poświęconym dowodom.

  5. Matematyka Mała Delta

    Fraktale z zer i jedynek

    Tradycyjnie fraktale kojarzą nam się (często) z ładnymi rysunkami figur, które wykazują pewien zestaw cech odróżniających je od zwykłych obiektów. Nie precyzujemy tutaj uniwersalnego zestawu, gdyż sama definicja fraktala nie jest uniwersalna. W większości sytuacji chcemy, aby fraktal miał złożoną strukturę, spełniał pewne cechy samopodobieństwa oraz by nie dało się go zbyt prosto opisać geometrycznie. Mimo to często można go opisać względnie prosto pewnymi regułami rekurencyjnymi wykonywanymi na obiekcie startowym (lub zestawie takich obiektów).

  6. Geometria

    Jak krzywizna zżera przestrzeń

    Cytat z General Relativity Johna Archibalda Wheelera, który został umieszczony u góry marginesu artykułu Michała Bejgera, można przejrzyście zilustrować geometrycznie, gdy zajmiemy się przestrzenią dwuwymiarową.

  7. obrazek

    Algebra Jak to działa?

    Maszyna różnicowa

    Dlaczego w szkole tak dużo uczymy się o wielomianach? Są dwa podstawowe powody. Pierwszy z nich - całkiem zrozumiały - po prostu jest to niemal największa klasa funkcji, których wartości umiemy obliczać. Potrafimy jeszcze dzielić wartości wielomianów, ale z pozostałymi funkcjami, które występują w programie szkolnym, a później na studiach, w zasadzie mielibyśmy sporo problemów.