Przeskocz do treści

Delta mi!

Loading
  1. obrazek

    Geometria

    Fraktalny świat papierowej tasiemki

    Weźmy długi pasek papieru i złóżmy go na pół. Następnie, nie rozkładając, óżmy go w tę samą stronę jeszcze dwa razy. W końcu, rozprostujmy złożenia tak, by papier zginał się pod kątem math Otrzymamy obiekt jak na rysunku 1.

  2. obrazek

    Teoria miary

    Jak wygląda zbiór math-wymiarowy, czyli o wymiarze fraktali

    Pod koniec XIX wieku w matematyce zaczęły pojawiać się niespotykane wcześniej obiekty geometryczne, charakteryzujące się skomplikowanym kształtem i zjawiskiem „samopodobieństwa” (podobieństwa dowolnie małych fragmentów do całości zbioru). Tego rodzaju zbiory nazywamy dziś fraktalami. Aby lepiej opisać geometrię takich obiektów, wykorzystuje się różne odmiany pojęcia wymiaru, zwane czasami wymiarami fraktalnymi.

  3. obrazek

    Solkoll / wikipedia

    Zastosowania matematyki

    Układy iterowanych przekształceń

    Kto coś słyszał o fraktalach, zwykle potrafi wymienić dwie ich cechy charakterystyczne: figury te mają skomplikowany kształt (bardziej wtajemniczeni mówią o ułamkowym wymiarze; kto chce być bardziej wtajemniczony, przeczyta artykuł Krzysztofa Barańskiego na stronie 4) i wykazują samopodobieństwo (bardziej wtajemniczeni umieją powiedzieć, jakiego rodzaju: geometryczne, afiniczne, rzutowe, a może stochastyczne). Mówiąc ogólnie, cechy te ma również wiele obiektów spotykanych w świecie, a to otwiera szerokie pole do zastosowań fraktali w grafice komputerowej. Jej celem jest przecież naśladowanie rzeczywistości.

  4. Fizyka kwantowa

    Fraktale kwantowe

    Czy funkcje fraktalne mają cokolwiek wspólnego z opisem zjawisk w rzeczywistości? Okazuje się, że tak. Funkcje fraktalne mogą opisywać stany kwantowe prostych obiektów, np. cząstki w pudełku...