Przeskocz do treści

Delta mi!

  1. obrazek

    Teoria liczb Drobiazgi

    Rozsądnego algorytmu brak

    Na obrazku widać przenumerowanie szesnastu z 17 równo rozmieszczonych punktów na okręgu. Obok "normalnych" czarnych numerków podano dziwnie rozmieszczone czerwone. Zrobiono to w ten sposób, że nawinięto na ten okrąg półprostą, na której zaznaczono punkty odpowiadające kolejnym potęgom 3.

  2. Algorytmy Co to jest?

    Algorytm faktoryzacji Shora

    W 1994 roku Peter Shor, pracujący wówczas w Bell Labs w New Jersey, pokazał, jak przy użyciu hipotetycznego komputera kwantowego rozłożyć w czasie wielomianowym dowolną liczbę naturalną na czynniki pierwsze. W tamtym czasie algorytmy kwantowe dopiero raczkowały. To właśnie odkrycie Shora spowodowało wielki rozwój tej dziedziny. Społeczność informatyków zrozumiała, że gdyby udało się zbudować komputer kwantowy rozsądnej wielkości, to świat stałby się istotnie inny. Nie jest bowiem znany żaden algorytm dla problemu faktoryzacji, czyli rozkładu na dzielniki pierwsze, który działa w czasie wielomianowym na komputerze klasycznym. Co więcej, nawet nie znaleziono algorytmu losowego, który z dużym prawdopodobieństwem w zazwyczaj niedługim czasie faktoryzuje liczbę: nie jest po prostu znana zupełnie żadna rozsądna heurystyka...

  3. Algebra

    Combinatorial Nullstellensatz w teorii liczb

    W Delcie 7/2017 przedstawiliśmy kilka "olimpijskich" zastosowań twierdzenia Combinatorial Nullstellensatz. Okazuje się, że zamiast "zwykłych" wielomianów wielu zmiennych możemy rozważać wielomiany o współczynnikach będących resztami z dzielenia przez pewną liczbę pierwszą |p; z dodawaniem i mnożeniem modulo p: Poniżej przedstawimy trzy klasyczne twierdzenia, których proste dowody są oparte na Combinatorial Nullstellensatz w wersji "resztowej". Twierdzenia te są szczególnie bliskie zastosowaniom olimpijskim.

  4. obrazek

    Teoria liczb Mała Delta

    Obsesja dużych liczb

    Kiedy miałem kilka, kilkanaście lat, wraz ze starszym bratem często graliśmy w grę. Należało w swojej kolejce podać liczbę większą od wskazanej przez poprzednika. Przegrywał oczywiście ten, kto nie był w stanie podać liczby większej. Czasami ponosiła nas fantazja i mówiliśmy "nieskończoność" albo "nieskończoność plus nieskończoność". Dziś już wiem, że nieskończoność liczbą nie jest, a działania na nieskończonościach są bardziej wyrafinowane, niż podejrzewałem. Gdyby i Tobie, drogi Czytelniku, przyszło kiedyś wymienić (albo usłyszeć) jakąś dużą liczbę, możesz sięgnąć do poniższej listy. Nie są to bowiem byle jakie liczby...

  5. Teoria liczb

    Liczby pierwsze jako niewiadome

    W historii ludzkiego poznania mało jest tak fascynujących pojęć jak liczby pierwsze. Chociaż dzisiaj wiemy o nich znacznie więcej niż 120 lat temu, to jeszcze więcej dotyczących ich pytań pozostaje bez odpowiedzi. Celem tej notki jest pokazanie, że trudno jest ocenić na pierwszy rzut oka, czy pytanie dotyczące liczb pierwszych jest łatwe, czy też bardzo trudne - poza zasięgiem współczesnej nauki.

  6. Teoria liczb

    Dywany Antoniego - nie tylko bajka o pewnych zastosowaniach ciągu Fibonacciego

    Dawno, dawno temu, za drugą górą, za trzecią rzeką żył sobie królewicz Leonardo pochodzący ze szlachetnego rodu Fibonaccich. No, może nie całkiem królewicz, ale piąty syn dyplomaty włoskiego. Może nie całkiem za trzecią rzeką, bo urodził się za ósmą doliną i trzynastoma bagnami, dokładniej w Pizie w 1175 roku. Zatem przynajmniej rzeczywiście żył dawno, dawno temu. Choć w pewnym sensie żyje do dzisiaj w swoich uczniach, bowiem wieść o liczbach Fibonacciego rozeszła się po świecie i szumi o nich niejeden las...

  7. Teoria liczb

    Kongruencje z królikiem

    Artykuł o powyższym tytule wypada rozpocząć od przypomnienia, czym są kongruencje. Jeśli dwie liczby naturalne |a i b dają tę samą resztę z dzielenia przez liczbę naturalną n (innymi słowy, jeśli |a− b jest podzielne przez n ), uczenie jest stwierdzić, że a i b przystają do siebie modulo n i fakt ten zanotować jako a ≡ b modn: W tym kontekście znaczek " ≡ " (lub raczej to, co on sobą reprezentuje) nazywamy właśnie kongruencją.

  8. Teoria liczb

    Prawda o matematykach

    Jakie jest największe miasto na świecie? Czy wirus jest organizmem żywym? Jaki jest najpiękniejszy obraz Tycjana? Są to proste pytania, na które nie ma jednoznacznej odpowiedzi. Przyczyną jest brak jasno określonych kryteriów. Jedną z cech wyróżniających matematykę spośród innych dziedzin życia i nauki jest to, że każde pojęcie ma swoją precyzyjną definicję. Wydaje się więc, że na każde pytanie matematyczne jest jednoznaczna odpowiedź, którą można formalnie uzasadnić. W konsekwencji, nic nie jest brane "na wiarę". Okazuje się, że nie do końca tak jest!

  9. Teoria liczb

    Bity w szufladkach

    Tak zwana zasada szufladkowa Dirichleta, jakże lubiana przez rozmaite komitety olimpiad matematycznych, łączy w sobie dwie atrakcyjne cechy. Z jednej strony jest tak prosta, że nawet dziecko w przedszkolu jest w stanie ją zrozumieć, z drugiej zaś zawiera zupełnie nieoczywisty element niekonstruktywny. Głosi ona mianowicie, że wkładając do n szuflad więcej niż n przedmiotów, mamy pewność, że w którejś szufladzie będą co najmniej dwa obiekty. W której - nie wiadomo, ale na pewno w którejś.

  10. Teoria liczb

    Polowanie na ciągi

    W 1964 roku amerykańsko-brytyjski matematyk Neil Sloane zaczął kolekcjonować znane ciągi liczb całkowitych. Niewinne hobby, motywowane zbadaniem własności kilku ciągów, które pojawiły się podczas pracy nad jego rozprawą doktorską, szybko przerodziło się w duże przedsięwzięcie. W efekcie zostały opublikowane dwie książki A Handbook of Integer Sequences (wydana w roku 1973, zawierająca 2372 ciągi) oraz The Encyclopedia of Integer Sequences (z 1995 roku, 5847 ciągi). W 1996 roku, gdy liczba zgromadzonych ciągów przekroczyła 10 000, dalsze ich przechowywanie w postaci książkowej stało się bardzo niepraktyczne...

  11. Teoria liczb

    Od Prouheta–Tarry'ego–Escotta do Thuego–Morse'a

    Do jednych z najstarszych problemów w historii matematyki należy niewątpliwie zaliczyć równania diofantyczne, czyli równania o dziedzinie rozwiązań ograniczonej do liczb całkowitych. Obecną nazwę zawdzięczają one Diofantosowi, greckiemu matematykowi żyjącemu w III wieku naszej ery w Aleksandrii. Swoje rozważania na temat takich równań Diofantos zawarł w serii ksiąg pod tytułem Arytmetyka. Studiując jedną z nich, Pierre de Fermat - żyjący w XVII wieku francuski prawnik i matematyczny samouk - uznał, że pewne zawarte w niej równanie nie może mieć rozwiązań, o czym raczył poinformować przyszłych czytelników w słynnej uwadze, zamieszczonej na marginesie (czytanej przezeń książki oraz niniejszego artykułu).

  12. Gry, zagadki, paradoksy Mała Delta

    Matematyka wedyjska

    "Matematyka wedyjska" to umowna nazwa zbioru algorytmów, które można zastosować, aby rozwiązać pewne rachunkowe problemy. Reguły te zostały sformułowane w XX wieku przez hinduskiego duchownego Bharatiego Kriszna Tirtha, który twierdził, że są one zapisane w hinduskich świętych księgach, Wedach.

  13. obrazek

    Teoria liczb

    Na tropie liczb gradowych

    W matematycznym świecie od zawsze znajdowało się mnóstwo tajemnic czekających na odkrycie. Tak zawiłych i zdradzieckich, że tylko szaleńcy mogli w ogóle wyobrazić sobie ich istnienie. Tymi szaleńcami byli nieustraszeni matematycy, którzy już od stuleci (jeżeli nie tysiącleci) szukają, rozwiązują i wyjaśniają zagadki, które większość ludzi już dawno uznawała za beznadziejne przypadki (lub są one tak abstrakcyjne, że w żaden sposób nieosiągalne).

  14. Teoria liczb

    Matematyka jest jedna: Magia liczb

    Dotarliśmy do ostatniej części cyklu, w którym prezentujemy wybrane przykłady zaskakujących relacji pomiędzy różnymi, pozornie bardzo odległymi, obszarami matematyki. Nie wypada jednak zakończyć bez poświęcenia należytej uwagi dziedzinie teorii liczb. Jak bowiem matematyka nazywana jest często królową nauk, tak o teorii liczb mówi się często jako o królowej matematyki. A królowa ma, oczywiście, wielu służących.

  15. Teoria liczb

    Reszta jest dziełem człowieka, czyli Fermat i inni

    Nie ma słynniejszego twierdzenia niż Wielkie Twierdzenie Fermata (WTwF) i tego nie zamierzam tu dowodzić. Zacznę po prostu od sformułowania faktu, który od 1995 roku jest rzeczywiście twierdzeniem za sprawą Andrew Wilesa, a wcześniej przez około trzy i pół wieku był hipotezą zajmującą głowy największych matematyków i rzesze amatorów...