Rozmyślania o myślakach
W październikowym numerze Delty przedyskutowaliśmy hipotezę continuum i zaskakujące rozwiązanie problemu dotyczącego jej prawdziwości (o ile Czytelnik zgodzi się nazwać to rozwiązaniem). Na pytanie, czy istnieje nieskończony podzbiór zbioru liczb rzeczywistych, który nie jest równoliczny ze zbiorem liczb naturalnych ani ze zbiorem wszystkich liczb rzeczywistych (jest więc "większy" od zbioru liczb naturalnych, ale "mniejszy" od zbioru liczb rzeczywistych), odpowiedź nie brzmi "tak" ani "nie". Okazało się, że nie jest możliwe udowodnienie, że taki zbiór istnieje, ani że taki zbiór nie istnieje...