Przeskocz do treści

Delta mi!

Loading
  1. Planimetria

    Uczniowie

    W 1967 roku szkoła podstawowa wypuściła po raz pierwszy absolwentów ośmioletniej podstawówki (tak, kiedyś też były reformy szkolne). W ogólnym reformatorskim zamieszaniu można było zrobić coś nietypowego, więc Wydział Matematyki i Fizyki Uniwersytetu Warszawskiego uruchomił uniwersyteckie klasy matematyczno-fizyczne w liceum im. Klementa Gottwalda (w latach 1906-50 oraz po 1990 roku Stanisława Staszica) - pretekst był prosty: pierwszym dyrektorem tego liceum był Jan Zydler, znakomity nauczyciel matematyki i autor do dziś niezapomnianych podręczników geometrii.

  2. Stereometria

    Czy Ziemia jest płaska? A może jednak?

    W artykule Czy Ziemia jest płaska (Delta 4/2016) pokazaliśmy, że sfera (będąca uproszczonym modelem powierzchni Ziemi) nie jest płaska, to znaczy nie daje się podzielić na fragmenty, z których każdy byłby izometryczny z pewnym fragmentem płaszczyzny. Przypomnijmy, że ta cecha odróżnia sferę od powierzchni bocznych walca i stożka. Pójdźmy więc dalej - czy jest możliwa taka gładka deformacja sfery, aby uzyskać powierzchnię płaską?

  3. Kombinatoryka

    Teoria grup w kombinatoryce

    Ten artykuł będzie poświęcony zliczaniu różnych kolorowań obiektów, które podlegają symetrii. Wyobraźmy sobie, że Kalina chciałaby pokolorować rogi kwadratu za pomocą m kolorów. Ile różnych figur może w ten sposób otrzymać?

  4. Planimetria Mała Delta

    Inwersja w różnych metrykach

    Wiele przedmiotów zawdzięcza swe istnienie kompozycji dwóch pozornie niewspółistniejących ze sobą idei. Louis Braille połączył koncepcję zapisu graficznego, czyli odczytywanego za pomocą wzroku, ze sposobem zapisywania wiadomości zaprojektowanym dla ludzi niewidomych, którzy korzystają ze zmysłu dotyku. W rezultacie powstał alfabet dla niewidomych, który można odczytać także za pomocą wzroku. Podobnie narodził się pomysł na zbadanie obrazów inwersyjnych w różnych metrykach...

  5. obrazek

    Geometria Mała Delta

    Z żabami przez symetrię

    Chyba każdy patrzył kiedyś w kalejdoskop - prostokątne lustra odbijające różnobarwne wzory powstałe z przesypujących się koralików. Nie znam nikogo, kto mając w ręku owo urządzenie, byłby w stanie powstrzymać się przed choćby najmniejszym obróceniem nim i zerknięciem przez małe oczko na otrzymany efekt. A gdyby odwrócić sytuację i zbadać, jak zmieni się obraz, gdy zamiast koralikami poruszymy lustrami znajdującymi się w kalejdoskopie? Zacznijmy od wyprawy do szklarza i wyboru bohatera kalejdoskopowych przygód - po starannym castingu wygrywa żaba.

  6. Algebra

    O grupie warkoczy

    Grupa warkoczy była rozważana po raz pierwszy przez Adolfa Hurwitza w roku 1885, jednak nie pod tą nazwą; w grupie rozważanej przez Hurwitza trudno było dopatrzyć się warkoczy. Nazwę wprowadził Emil Artin w roku 1925, bo w jego interpretacji elementy grupy kojarzą się z warkoczami. Przypomnę, jak się je zaplata...

  7. Geometria różniczkowa

    Jak pryska bańka mydlana?

    W ostatnich kilkunastu latach na pograniczu geometrii różniczkowej i teorii równań różniczkowych rozrósł się nowy, pokaźny dział matematyki, poświęcony badaniom krzywych i powierzchni, które poruszają się zgodnie z jakimś określonym przepisem, zmieniając wraz z upływem czasu swój charakter i własności. Różne punkty mogą przy tym poruszać się z różnymi prędkościami, wyznaczonymi przez rozmaite geometryczne charakterystyki krzywej czy powierzchni...

  8. Planimetria Deltoid

    Mały wybór? I dobrze!

    Izometrią nazywamy przekształcenie, które nie zmienia odległości między punktami. Obrazy trzech niewspółliniowych punktów jednoznacznie ją wyznaczają. Twierdzenie Chaslesa głosi, że każda izometria płaszczyzny jest przesunięciem, obrotem lub symetrią z poślizgiem.

  9. obrazek

    Geometria

    Odbicia w dwóch zwierciadłach

    Odbicie światła od zwierciadła płaskiego, przerabiane w szkole w ramach optyki geometrycznej, uważane jest za zagadnienie banalne. Bywa czasem uatrakcyjniane rozważaniem kwestii, dlaczego lustro zamienia stronę lewą z prawą, a nie zamienia góry z dołem. Natomiast znacznie ciekawsze - a architektom niezwykle przydatne w projektowaniu ciekawych wnętrz - okazuje się zbadanie zjawiska odbicia światła od pary zwierciadeł, których płaszczyzny tworzą dowolny kąt. Może wtedy dojść do wielokrotnych odbić, w wyniku których powstaje wiele obrazów. Okazuje się, że liczba powstałych obrazów zależy nie tylko od kąta między zwierciadłami, ale też od położenia przedmiotu.

  10. Algebra

    Logarytm – logika i rytm?

    Dodawanie jest łatwe. Każdy się z tym zgodzi. Ot, zapisujemy dodawane liczby jedna pod drugą, dodajemy kolejne cyfry, bacząc na przeniesienia i to wszystko. Gorzej jest z mnożeniem...

  11. obrazek

    Katarzyna Wyrobek

    Gips

    Katarzyna Wyrobek

    Gips

    Stereometria

    Jak opisać kryształ?

    Kryształy to jedne z najbardziej osobliwych elementów świata przyrody. Materiały krystaliczne wykazują niemal niespotykaną naturalną tendencję do tworzenia wielościanów. Piętnastometrowe kryształy w Meksyku czy dwumilimetrowe kryształki soli w naszej kuchni - wszystkie swą szczególną postać zawdzięczają uporządkowanemu rozmieszczeniu atomów, jonów lub cząsteczek.