Przeskocz do treści

Delta mi!

  1. obrazek

    David Hilbert (1862-1943)

    David Hilbert (1862-1943)

    Algorytmy

    O dziesiątym problemie Hilberta

    Podczas odbywającego się w 1900 roku w Paryżu Drugiego Międzynarodowego Kongresu Matematyków jeden z referatów wygłosił wybitny niemiecki matematyk David Hilbert. W swoim wystąpieniu zawarł on listę dwudziestu trzech zagadnień matematycznych stanowiących, jego zdaniem, szczególne wyzwanie dla matematyków w rozpoczynającym się XX wieku. Większość z nich doczekała się rozwiązania. Inne, jak słynna hipoteza Riemanna, pozostają otwarte, inspirując kolejne pokolenia naukowców.

  2. obrazek

    industry.it4i.cz

    Zastosowania matematyki Co to jest?

    30 lat addytywnej metody Schwarza

    Gotów jestem założyć się, Czytelniku, że wcześniej o niej nie słyszałeś. Tymczasem pod tą mało medialną nazwą kryje się metoda, dzięki której współczesne superkomputery pracują pełną parą, prowadząc skomplikowane symulacje. Łączy ona w sobie algorytmiczną efektywność z fizyczną intuicją, a bez wglądu w jej matematyczny sens, być może, nigdy byśmy jej nie poznali.


  3. Zastosowania matematyki

    Dowody i obliczenia

    Kilka miesięcy temu Marek Kordos zasugerował, że skoro napisałem już w Delcie 12/2014 o tym, czego o równaniu Naviera-Stokesa nie wiadomo, to może napisałbym też artykuł o tym, co z tym równaniem da się zrobić. Tak sformułowana oferta brzmi trochę jak "propozycja nie do odrzucenia", więc nieopatrznie obiecałem taki artykuł dostarczyć. Piszę "nieopatrznie", bo w momencie podjęcia zobowiązania nie uściśliliśmy, co powinienem rozumieć przez stwierdzenie da się zrobić. Czy chodzi o to, co da się udowodnić? Czy raczej o to, co daje się obliczyć?

  4. Teoria liczb

    Od Prouheta–Tarry'ego–Escotta do Thuego–Morse'a

    Do jednych z najstarszych problemów w historii matematyki należy niewątpliwie zaliczyć równania diofantyczne, czyli równania o dziedzinie rozwiązań ograniczonej do liczb całkowitych. Obecną nazwę zawdzięczają one Diofantosowi, greckiemu matematykowi żyjącemu w III wieku naszej ery w Aleksandrii. Swoje rozważania na temat takich równań Diofantos zawarł w serii ksiąg pod tytułem Arytmetyka. Studiując jedną z nich, Pierre de Fermat - żyjący w XVII wieku francuski prawnik i matematyczny samouk - uznał, że pewne zawarte w niej równanie nie może mieć rozwiązań, o czym raczył poinformować przyszłych czytelników w słynnej uwadze, zamieszczonej na marginesie (czytanej przezeń książki oraz niniejszego artykułu).

  5. obrazek

    Paolo Ruffini (1765-1822)

    Paolo Ruffini (1765-1822)

    Algebra

    Równania algebraiczne

    Równania algebraiczne, czyli takie, które można zapisać, przyrównując wielomian do zera, intrygowały ludzi od bardzo dawna. Rozwiązywaniem równań zajmowano się już w czasach starożytnych. W szkole uczą nas, jak rozwiązywać równania liniowe i kwadratowe, to jest takie, w których występuje funkcja liniowa (wielomian stopnia pierwszego) albo funkcja kwadratowa (wielomian stopnia drugiego). Matematycy włoscy podali w XVI wieku wzory na pierwiastki równań stopnia trzeciego i czwartego. A co z równaniami wyższych stopni?

  6. obrazek

    Zastosowania matematyki

    Równanie Naviera–Stokesa

    Rozważmy przepływ nieściśliwego płynu w pewnym obszarze math Załóżmy, że wiemy, jaka jest prędkość płynu w każdym punkcie obszaru, to znaczy że znamy pole prędkości, oznaczone math w chwili początkowej math Jak będzie wyglądało pole prędkości płynu math w dowolnym momencie math

  7. Algebra

    Zadania z indywidualnością

    Matematyka, zwłaszcza tzw. szkolna, wypracowała przez lata procedury rozwiązywania określonego typu zadań. Gdy rozpoznajemy problem jako równanie kwadratowe, w głowie pojawia się hasło "bekwadratminusczteryace" i już wszystko wiadomo, niezależnie od tego, jak w rzeczywistości nazwaliśmy współczynniki funkcji kwadratowej...

  8. Algebra

    O tym, co się da, a czego nie da się rozwiązać

    Rozwiąż równanie! – to jedno z najczęściej słyszanych przez ucznia poleceń nauczyciela matematyki. Gdy usłyszymy to polecenie, nie wątpimy, że otrzymane równanie można rozwiązać i że my potrafimy to zrobić. Zresztą o każdym zadaniu matematycznym, na które natrafimy, uważamy, że można je rozwiązać. Jeśli nie widzimy rozwiązania od razu, to pewnie trzeba jeszcze trochę pomyśleć, pokombinować, wynaleźć jakiś sprytny sposób, może poczytać w mądrych książkach i rozwiązanie musi się znaleźć. Czy na pewno tak jest? Okazuje się, że istnieją zadania, niedające się rozwiązać, choć są łudząco podobne do innych, które rozwiązujemy bez trudu.