Przeskocz do treści

Delta mi!

Loading
  1. obrazek

    industry.it4i.cz

    Zastosowania matematyki Co to jest?

    30 lat addytywnej metody Schwarza

    Gotów jestem założyć się, Czytelniku, że wcześniej o niej nie słyszałeś. Tymczasem pod tą mało medialną nazwą kryje się metoda, dzięki której współczesne superkomputery pracują pełną parą, prowadząc skomplikowane symulacje. Łączy ona w sobie algorytmiczną efektywność z fizyczną intuicją, a bez wglądu w jej matematyczny sens, być może, nigdy byśmy jej nie poznali.


  2. Zastosowania matematyki

    Dowody i obliczenia

    Kilka miesięcy temu Marek Kordos zasugerował, że skoro napisałem już w Delcie 12/2014 o tym, czego o równaniu Naviera-Stokesa nie wiadomo, to może napisałbym też artykuł o tym, co z tym równaniem da się zrobić. Tak sformułowana oferta brzmi trochę jak "propozycja nie do odrzucenia", więc nieopatrznie obiecałem taki artykuł dostarczyć. Piszę "nieopatrznie", bo w momencie podjęcia zobowiązania nie uściśliliśmy, co powinienem rozumieć przez stwierdzenie da się zrobić. Czy chodzi o to, co da się udowodnić? Czy raczej o to, co daje się obliczyć?

  3. Teoria liczb

    Od Prouheta–Tarry'ego–Escotta do Thuego–Morse'a

    Do jednych z najstarszych problemów w historii matematyki należy niewątpliwie zaliczyć równania diofantyczne, czyli równania o dziedzinie rozwiązań ograniczonej do liczb całkowitych. Obecną nazwę zawdzięczają one Diofantosowi, greckiemu matematykowi żyjącemu w III wieku naszej ery w Aleksandrii. Swoje rozważania na temat takich równań Diofantos zawarł w serii ksiąg pod tytułem Arytmetyka. Studiując jedną z nich, Pierre de Fermat - żyjący w XVII wieku francuski prawnik i matematyczny samouk - uznał, że pewne zawarte w niej równanie nie może mieć rozwiązań, o czym raczył poinformować przyszłych czytelników w słynnej uwadze, zamieszczonej na marginesie (czytanej przezeń książki oraz niniejszego artykułu).

  4. obrazek

    Paolo Ruffini (1765-1822)

    Paolo Ruffini (1765-1822)

    Algebra

    Równania algebraiczne

    Równania algebraiczne, czyli takie, które można zapisać, przyrównując wielomian do zera, intrygowały ludzi od bardzo dawna. Rozwiązywaniem równań zajmowano się już w czasach starożytnych. W szkole uczą nas, jak rozwiązywać równania liniowe i kwadratowe, to jest takie, w których występuje funkcja liniowa (wielomian stopnia pierwszego) albo funkcja kwadratowa (wielomian stopnia drugiego). Matematycy włoscy podali w XVI wieku wzory na pierwiastki równań stopnia trzeciego i czwartego. A co z równaniami wyższych stopni?

  5. obrazek

    Zastosowania matematyki

    Równanie Naviera–Stokesa

    Rozważmy przepływ nieściśliwego płynu w pewnym obszarze math Załóżmy, że wiemy, jaka jest prędkość płynu w każdym punkcie obszaru, to znaczy że znamy pole prędkości, oznaczone math w chwili początkowej math Jak będzie wyglądało pole prędkości płynu math w dowolnym momencie math

  6. Algebra

    Zadania z indywidualnością

    Matematyka, zwłaszcza tzw. szkolna, wypracowała przez lata procedury rozwiązywania określonego typu zadań. Gdy rozpoznajemy problem jako równanie kwadratowe, w głowie pojawia się hasło "bekwadratminusczteryace" i już wszystko wiadomo, niezależnie od tego, jak w rzeczywistości nazwaliśmy współczynniki funkcji kwadratowej...

  7. Algebra

    O tym, co się da, a czego nie da się rozwiązać

    Rozwiąż równanie! – to jedno z najczęściej słyszanych przez ucznia poleceń nauczyciela matematyki. Gdy usłyszymy to polecenie, nie wątpimy, że otrzymane równanie można rozwiązać i że my potrafimy to zrobić. Zresztą o każdym zadaniu matematycznym, na które natrafimy, uważamy, że można je rozwiązać. Jeśli nie widzimy rozwiązania od razu, to pewnie trzeba jeszcze trochę pomyśleć, pokombinować, wynaleźć jakiś sprytny sposób, może poczytać w mądrych książkach i rozwiązanie musi się znaleźć. Czy na pewno tak jest? Okazuje się, że istnieją zadania, niedające się rozwiązać, choć są łudząco podobne do innych, które rozwiązujemy bez trudu.