Przeskocz do treści

Delta mi!

  1. Kryptologia A jednak się da!

    Protokół Yao (AJSD V)

    Jedną z drobnych przyjemności w życiu milionera jest porównywanie swojego bogactwa z bogactwem innych milionerów. Czasem nie jest to trywialne zadanie, gdyż afiszowanie się ze stanem swojego konta (nawet przybliżonym) mogłoby zostać uznane za naruszenie krezusowej etykiety. Istnieje co prawda szeroki wachlarz subtelnych wskaźników, w rodzaju rozmiaru posiadłości czy liczby luksusowych aut, jednak te bywają bardzo mylące. Czy jest możliwa wymiana informacji między dwoma bogaczami w taki sposób, by każdy z nich dowiedział się, który z nich jest bogatszy, i byłaby to jedyna informacja o stanie posiadania rozmówcy?

  2. Kryptologia A jednak się da!

    Odtajniamy transfer utajniony (AJSD IV)

    Ence-pence w której ręce? - za moich dziecięcych lat przedstawiona formułka, której towarzyszyły często dwie wyciągnięte przez wypowiadającą ją osobę ręce, była zwiastunem jakiejś bardzo przyjemnej (najczęściej słodkiej) niespodzianki. Każda wyciągnięta dłoń skrywała bowiem coś dobrego, jednak jako szkrab i tak poświęcałem chwilę zastanowienia nad jej wyborem, będąc świadomym ryzyka, że niewskazana przeze mnie ręka zawiera bardziej atrakcyjny podarek i powędruje on do mojego brata.

  3. Kryptologia A jednak się da!

    O dowodach z wiedzą zerową (AJSD III)

    Bywa tak, że chcemy o czymś przekonać niedowiarków, jednak w taki sposób, aby uwierzyli, ale też aby za dużo się nie dowiedzieli. Fabularna, nieinformatyczna ilustracja, którą lubię przywoływać, gdy próbuję wyrazić, o co mi chodzi, jest następująca. Wyobraźmy sobie, że potrafię zliczyć liczbę liści na drzewie, jeśli tylko spojrzę na nie przez 5 sekund. Więcej: twierdzę, że umiem to publicznie udowodnić w przeciągu 5 minut, i to tak, że wszyscy mi uwierzą, ale nikt się nie zorientuje, jak ja to robię!

  4. Kryptologia A jednak się da!

    Bez zobowiązań o zobowiązaniach (AJSD II)

    Zapewne każdy z czytających te słowa grał kiedyś w marynarza, ale na wypadek gdyby któryś z Czytelników miał smutne dzieciństwo pozbawione tej gry, pokrótce wyjaśnię zasady: na ustalony sygnał każdy z uczestników przedstawia wybraną przez siebie liczbę (najczęściej przy użyciu własnych palców). Następnie rozpoczyna się (cykliczne) wyliczanie uczestników aż do sumy przedstawionych przez nich liczb (oczywiście, należy zawczasu ustalić, od kogo rozpoczyna się wyliczanka). Osoba, na której zakończy się wyliczanie, jest "zwycięzcą" (wziętym w cudzysłów, gdyż "nagrodą" może być, na przykład, zmywanie naczyń)...

  5. Kryptologia

    Krzywe eliptyczne w kryptografii

    Tak zwana "kryptografia krzywych eliptycznych" to bardzo modne i popularne pojęcie, które rzeczywiście jest ważne, ale - niestety - o którym mówi się najczęściej niezwykle powierzchownie, bez wchodzenia w "detale matematyczne". Niniejszy artykuł próbuje pójść takiemu podejściu pod prąd - chcemy w elementarny sposób objaśnić, o co tak naprawdę chodzi z tymi krzywymi eliptycznymi.

  6. Kryptologia

    Kryptologia postkwantowa

    Jednym z ważniejszych osiągnięć informatyki opartej o komputer kwantowy, które zresztą eksponujemy w tym numerze Delty, jest opracowanie efektywnego (wielomianowego od rozmiaru danych) algorytmu na rozkład dużych liczb na czynniki pierwsze. Wspaniały, budzący zachwyt wynik. Nie dość, że przepiękny, korzystający z bardzo ładnego fragmentu matematyki, to jeszcze pozwalający wierzyć, że komputer kwantowy złożony z n kubitów jest istotnie lepszy od komputera klasycznego, zawierającego pamięć o n bitach. Albo inaczej: że (też prezentowany w tym numerze) model obliczeń komputera kwantowego ma istotnie większą siłę wyrazu (przy założeniu wielomianowego czasu działania) niż klasyczny model Turinga czy inne równoważne.

  7. Algorytmy

    Kocha, lubi, szyfruje...

    W fizyce szkolnej nieustannie przewijającym się motywem są dwa znane miasta: miasto A oraz miasto B. W kryptografii takimi gwiazdami są Alicja i Bob, którzy ciągle się komunikują, uwierzytelniają, a zwykle przeszkadza im w tym złowroga Ewa.