Przeskocz do treści

Delta mi!

  1. Kombinatoryka

    Kombinatoryka i nieskończoność

    Kombinatoryka zajmuje się własnościami zbiorów skończonych, w szczególności zagadnieniem zliczania elementów takich zbiorów. Czy może zatem w kombinatoryce znaleźć się miejsce dla nieskończoności? Okazuje się, że tak – pokażę jedno z takich zastosowań nieskończoności: funkcje tworzące...

  2. Teoria Mnogości Mała Delta

    Pizza Venna

    Moja rodzina lubi pizzę, a ja lubię ją piec. Jednak w naszej gromadce nikt nie lubi jeść takiej samej pizzy, jak pozostali członkowie rodziny. Jest nas tylko czworo, więc można sobie z tym poradzić bez trudu, używając tylko dwóch składników – typowa pizza wygląda więc tak...

  3. Teoria Mnogości Co to jest?

    Miara liczności

    Jednym z podstawowych sposobów mierzenia zbioru jest liczenie jego elementów. Liczenie ma jednak jasny sens tylko dla zbiorów skończonych. Wiadomo, co to znaczy, że jakiś zbiór ma math math czy math elementów. W przypadku zbiorów nieskończonych sytuacja jest natomiast znacznie mniej oczywista. Czy zbiorowi nieskończonemu da się w ogóle przypisać liczbę elementów sensowniej niż przez uznanie, że wynosi ona zawsze math ?