Przeskocz do treści

Delta mi!

Loading
  1. Analiza

    e z gumy

    Jak znaleźć |e na gitarze? Nawet początkujący gitarzysta wie, że przy standardowym nastrojeniu właśnie taki dźwięk wydają dwie skrajne struny. My jednak będziemy szukać innego e; a mianowicie pewnej znanej i przydatnej stałej matematycznej. Powiedzmy, że z jakiegoś powodu chcemy poddać próbie wytrzymałość strun. W tym celu kręcimy kołkiem do momentu, w którym długość nawiniętej na niego części struny będzie taka sama, jak długość części nienawiniętej. Pytanie brzmi: ilukrotnie w takim procesie musiałaby rozciągnąć się struna? Aby udzielić na nie odpowiedzi, rozważymy analogiczną sytuację, w której zamiast strun przyglądamy się gumie.

  2. obrazek

    prof. dr Roman Sikorski (1920 - 1983) - polski matematyk, profesor Uniwersytetu Warszawskiego i Instytutu Matematycznego PAN.

    prof. dr Roman Sikorski (1920 - 1983) - polski matematyk, profesor Uniwersytetu Warszawskiego i Instytutu Matematycznego PAN.

    Analiza Co to jest?

    Czy liczby rzeczywiste są rzeczywiste?

    Liczby naturalne są niewątpliwie naturalne. Liczby całkowite niewątpliwie zasługują na nazwę całkowite. Liczby wymierne należałoby możne nazywać liczbami mierzącymi lub wymierzającymi, bowiem wszystkie pomiary wykonujemy w praktyce w liczbach wymiernych, zresztą nie tylko pomiary: wszelkie rachunki na konkretnych liczbach wykonywane są w praktyce wyłącznie w obrębie liczb wymiernych. Po co więc wprowadzać szersze, lecz znacznie trudniejsze pojęcie liczb rzeczywistych, skoro liczby wymierne wystarczają w rachunkach? Definicja liczb rzeczywistych nastręcza zawsze pewne trudności, wskutek tego w podręcznikach szkolnych jest raczej przemycana, niż precyzyjnie formułowana.

  3. Analiza

    Gdzie tam znaczy też z powrotem

    Każda ptaszyna swym własnym głosem Pana Boga chwali. Tym przysłowiem odpowiedziałem podczas obrony pracy doktorskiej na pytanie Profesora Andrzeja Mostowskiego, czemu zbudowałem aksjomatykę geometrii eliptycznej, podczas gdy można tę geometrię uprawiać analitycznie (czyli rachunkowo)...

  4. Analiza

    Myśl logarytmicznie!

    W tym artykule ilustrujemy potęgę logarytmów w projektowaniu efektywnych algorytmów i obliczeń. Myślenie, w tle którego stoi logarytm, ukryty lub widoczny, nazwaliśmy myśleniem logarytmicznym. Stanowi ono jedną z podstawowych kompetencji niezbędnych przy efektywnym rozwiązywaniu rzeczywistych problemów informatycznych. Pokazujemy również - co może być ciekawe dla nauczycieli matematyki - jak wprowadzić pojęcie logarytmu, nie odwołując się do matematycznego formalizmu, a posługując się koncepcyjnym modelem redukcji rozmiaru problemu w każdym (lub w co drugim) kroku co najmniej o połowę. Może Cię zdziwić, że ta idea prowadząca do logarytmu występuje w algorytmie Euklidesa, który został opisany niemal 2000 lat przed wynalezieniem logarytmu przez Napiera.

  5. Analiza

    Człapanie do nieskończoności

    Matematyka, jak przystało na królową nauk, jest dyscypliną dość trudną i wymagającą umiejętności abstrakcyjnego myślenia. Jeżeli przyjąć za Galileuszem, że matematyka jest alfabetem, za pomocą którego Bóg opisał wszechświat, to trzeba przyznać, że jest to alfabet dość złożony i nie jest łatwo nauczyć się dobrze nim posługiwać. Jednym z jego ważniejszych elementów jest niewątpliwie nieskończoność.

  6. Analiza

    Konstrukcja, która zmieniła definicję krzywej

    Na nieskończoności opierają się konstrukcje większości obiektów analizy matematycznej, choć często w niejawny sposób. Przyjrzyjmy się choćby ciągłości – pojęciu na pierwszy rzut oka z nieskończonością niezwiązanemu. Można powiedzieć, że funkcja jest ciągła, jeśli „nie rozrywa” dziedziny...

  7. Analiza

    Nierówności i styczne

    W dowodzeniu nierówności często pomocna bywa tak zwana metoda stycznych. Zdarza się, że wykres funkcji leży nad pewną prostą styczną do niego lub pod taką prostą (wszędzie lub tylko na jakimś przedziale). To oznacza, że możemy oszacować wartości tej funkcji przez wartości funkcji liniowej, której wykresem jest wybrana styczna. Żeby takie oszacowanie doprowadziło do celu, wybrana styczna musi przechodzić przez punkt, dla którego badana nierówność jest równością. Przyjrzymy się kilku przykładom zastosowań tej metody.

  8. Analiza

    Lew i człowiek

    Około 1930 roku Richard Rado (1906-1989) postawił następujący problem: Lew math i człowiek math – traktowani jako punkty – poruszają się w domkniętym kole jednostkowym z jednakowymi maksymalnymi prędkościami. Czy (głodny) lew zawsze złapie człowieka?

  9. Analiza

    Nieznane wykresy znanych funkcji

    Zaczęło się od okręgu. Wykres funkcji sinus okazał się okręgiem. Jak to możliwe? Okazuje się, że czasem lekkie odstąpienie od utartego punktu widzenia może nas daleko zaprowadzić. Wystarczy, na przykład, wybrać inny niż prostokątny układ współrzędnych do przedstawiania wykresów funkcji.