Przeskocz do treści

Delta mi!

  1. Planimetria

    Składanie inwersji z symetrią

    Inwersja jest bardzo pożytecznym przekształceniem, które ma szerokie zastosowanie w zadaniach związanych z okręgami. W wielu z nich opłaca się stosować ją w taki sposób, aby nie mnożyć punktów - innymi słowy tak dobrać promień inwersji, aby obrazy interesujących nas punktów wypadały w innych punktach rozważanej konfiguracji. Zdarza się jednak, że do uzyskania tego efektu potrzebujemy dodatkowo złożyć inwersję z symetrią.

  2. Geometria różniczkowa

    O trójkątach (nie tylko) na sferze

    Rozpocznijmy od przypomnienia, czym jest trójkąt geodezyjny. Mając dane dwa punkty na powierzchni (powiedzmy, że leżące odpowiednio blisko siebie), najkrótszą łączącą je krzywą leżącą na tej powierzchni nazwiemy geodezyjną. Dla przykładu - na płaszczyźnie tę rolę pełnią odcinki, a na sferze łuki tzw. okręgów wielkich. Przez trójkąt geodezyjny rozumiemy obszar wyznaczony przez trzy punkty, zamknięty między łączącymi je geodezyjnymi. Kąt w wierzchołku takiego trójkąta liczymy jako kąt między stycznymi do odpowiednich krzywych geodezyjnych.

  3. Planimetria

    Czworokąty bliźniacze

    Przypuśćmy, że dane mamy dwa czworokąty wypukłe ABCD i A ∗B∗C ∗D ∗ takie, że każdemu bokowi jednego odpowiada pewien równoległy doń bok drugiego, a każdej przekątnej - równoległa przekątna. Na pierwszy rzut oka wydawać by się mogło, że takie czworokąty muszą być podobne, jest jednak druga możliwość - wówczas czworokąty te są bliźniacze...

  4. Planimetria

    Dzienne i nocne krzywe rowerowe

    Niech autorowi będzie wolno cofnąć się w czasy lśniących w słońcu chromowanych obręczy kół rowerów (lub wózków dziecinnych). Obręcze te rzucały rozmaite odblaski na powierzchnię szosy. Bogactwo obserwowanych kształtów zachęcało do podjęcia próby opisania ich w języku matematyki. Zróbmy to teraz, choć poniewczasie - bo współcześnie trudniej o okazję ujrzenia tego zjawiska.

  5. obrazek

    Geometria

    Twierdzenia geometrii euklidesowej we Wszechświecie

    W artykule rozważymy geometryczny problem, do którego sformułowania użyjemy motywacji astronomicznych. Załóżmy, że chcemy sprawdzić, czy najbliższa naszej intuicji szkolna geometria, zwana geometrią euklidesową, opisuje Wszechświat. Naturalną próbą odpowiedzi będzie eksperymentalne sprawdzenie, czy twierdzenia tej geometrii zachodzą w otaczającej nas przestrzeni. Na przykład możemy zbadać, czy suma kątów wewnętrznych trójkąta utworzonego przez punkt na Ziemi i dwa punkty na różnych odległych gwiazdach wynosi 180 ○: Jednakże wszystkie takie sprawdzenia tego i innych twierdzeń geometrii euklidesowej możemy wykonać jedynie w pewnym otoczeniu Ziemi, którego promień jest wyznaczony zasięgiem naszych teleskopów...

  6. Stereometria

    Przyroda geometrą

    Istnieje nieskończenie wiele brył geometrycznych, którymi matematycy nigdy dotąd się nie zajmowali, bo po prostu nie były one dla nich wystarczająco interesujące. Czasem jednak zdarza się, że i niematematyk natrafi na coś, co z pewnych powodów okaże się ważne, a wtedy robi się naprawdę ciekawie.

  7. Grawitacja i Wszechświat

    Geometria na wirującej karuzeli

    Ile wynosi suma wewnętrznych kątów w trójkącie? Kwestia ta nurtowała słynnego matematyka Carla Gaussa na tyle, że zadał sobie trud wspinania się na górskie szczyty. Jak wiadomo szczyty są po to, by je zdobywać, jednak błędem alpinistów jest to, że tę piękną metaforę traktują dosłownie. Gauss jednak nie był alpinistą. Chodził po górach nie po to, by "zdobywać szczyty", lecz po to, by przy użyciu urządzeń geodezyjnych mierzyć sumę kątów w gigantycznych trójkątach utworzonych z trzech odległych alpejskich wierzchołków.

  8. obrazek

    Planimetria Deltoid

    O deltoidach

    Niniejszy odcinek Deltoidu o okrągłym (w systemie jedenastkowym) numerze jest odcinkiem ostatnim. Nie kryjemy smutku z tego powodu, cieszymy się jednocześnie, że na naszych łamach ta wspaniała seria ukazywała się przez okrągłych 10 lat. Mamy nadzieję, że jeszcze wiele razy nazwisko Autorki zagości w naszym spisie treści.
    Joasiu, za Twoją nienaganną punktualność w dostarczaniu materiałów, zegarmistrzowską dokładność przy ich korekcie, a przede wszystkim za deltoidową fantastyczność serdecznie dziękujemy!

    Redakcja

  9. obrazek

    Planimetria Drobiazgi

    Skąd się wzięło siedem?

    Począwszy od Pitagorasa wierzymy, że przyroda działa zgodnie z regułami matematyki. Wobec tego odszukajmy reguły, którymi kierował się siódmaczek (Trientalis) z naszych zagajników, wybierając siedmiokrotną symetrię swoich kwiatów.

  10. Stereometria Deltoid

    Kroimy kostkę

    Podzielmy kostkę na 27 przystających sześcianów (jak w kostce Rubika), a następnie wyrzućmy 7 z nich: ten ze środka oraz środkowy na każdej ze ścian. W kolejnych krokach konstrukcji powtarzajmy powyższą operację dla każdego z pozostających mniejszych sześcianów.

  11. Geometria

    Anomalie kul i kostek

    Kwadrat i koło mają swoje naturalne odpowiedniki trójwymiarowe (sześcian i kula), czterowymiarowe, pięciowymiarowe i dowolnie wymiarowe. Pisząc "dowolny wymiar", mamy na myśli więcej osi układu, czyli też współrzędnych opisujących obiekt. Wyobraźmy sobie mianowicie przestrzeń trójwymiarową (co nie jest specjalnie trudne). Każdy punkt takiej przestrzeni można opisać za pomocą zestawu trzech współrzędnych |(x;y;z ): Gdy opisujemy położenie punktu na płaszczyźnie, myślimy zwykle o układzie kartezjańskim i parze współrzędnych (x;y ): Opisując punkt na prostej, używamy tylko jednej liczby. Gdy zaś chcemy opisać przestrzeń czterowymiarową, lub ogólniej |n -wymiarową, używamy zestawu n liczb |(x1; :::;xn):

  12. obrazek

    Rys. 1

    Rys. 1

    Planimetria

    O ortocentrach i parabolach, a zwłaszcza o twierdzeniu odwrotnym Steinera

    W Delcie 11/2017 został przedstawiony (bez dowodu) fakt, że dla czterech dowolnych prostych (tak dowolnych, że są parami nierównoległe i żadne trzy nie mają punktu wspólnego) ortocentra wyznaczonych przez nie czterech trójkątów leżą na jednej prostej, a okręgi opisane na tych trójkątach mają punkt wspólny. Ponadto parabola, której kierownicą jest prosta zawierająca ortocentra, a ogniskiem punkt wspólny okręgów opisanych jest styczna do czterech wyjściowych prostych (Rys. 1).

  13. obrazek

    Punkty D, E, F to środki boków, X, X', Y, Y', Z, Z' oznaczają pola.

    Punkty D, E, F to środki boków, X, X', Y, Y', Z, Z' oznaczają pola.

    Planimetria Deltoid

    Środkowe i pola

    Środkowa trójkąta to odcinek łączący wierzchołek ze środkiem przeciwległego boku. Środkowe przecinają się w jednym punkcie, zwanym środkiem ciężkości i dzieli on każdą z nich w stosunku |2 1; licząc od wierzchołka trójkąta (rys. obok).

  14. obrazek

    Geometrie nieeuklidesowe

    Geometria Bolyaia–Łobaczewskiego

    Najdłużej badanym problemem matematycznym była kwadratura koła. Zaraz za nią uplasowała się kwestia piątego postulatu Euklidesa. Chodziło o to, czy zdanie "jeśli dwie proste przecięte trzecią tworzą kąty wewnętrzne jednostronne o sumie mniejszej od dwóch kątów prostych, to proste te po przedłużeniu przetną się i to właśnie z tej strony" spełnia wymagane dla postulatów warunki, czyli czy wyraża rzeczy jasne i oczywiste i czy jest dostatecznie zwięzłe, by być uznane za pierwotną prawdę. Debatę zapoczątkował w V wieku Proklos, odpowiadając dwukrotnie nie i proponując, by wykazać, że usunięcie tego postulatu gmachu geometrii nie naruszy.

  15. Planimetria Deltoid

    Wysokości czworokąta

    Wysokością czworokąta nazwijmy prostą przechodzącą przez środek jego boku i prostopadłą do boku przeciwległego. W niektórych czworokątach wszystkie cztery wysokości przecinają się w jednym punkcie - ortocentrum czworokąta. Przykładowo kwadrat ma ortocentrum, a romb niebędący kwadratem nie ma.

  16. Planimetria Deltoid

    Pasujemy do siebie!

    W wielu zadaniach, w których występują kąty lub ich sumy, przydatne bywa przeniesienie pewnych figur tak, by kąty te znalazły się obok siebie. Szczególnie wygodne jest to wtedy, gdy suma pewnych kątów równa jest np. |90○ lub |360○; a także, gdy niektóre z danych odcinków są równej długości.

  17. Planimetria

    Tak samo, ale zupełnie inaczej

    Geometrzy od dawna marzyli o współrzędnych jednorodnych, czyli takich |n -tkach liczb (dalej dla uproszczenia będzie mowa o parach i trójkach) przyporządkowanych punktom, że gdy wszystkie liczby w n -tce pomnożymy przez tę samą liczbę, to nowa |n -tka będzie współrzędnymi tego samego punktu.

  18. Planimetria

    Przesuwanie w zadaniach olimpijskich

    W tym artykule omówimy pewną bardzo pożyteczną technikę - tzw. przesuwanie. Polega ona na tym, że niektóre obiekty przesuwamy o pewien wektor i udowadniamy, że teza zadania jest niezmiennicza ze względu na wykonanie tej operacji. Ta metoda pozwala na sprowadzenie rozwiązywanego zadania do znacznie prostszego. Bardzo często ten prostszy przypadek ma jakiś rodzaj symetrii, z której łatwo wywnioskować tezę. Zanim przejdziemy do rozwiązywania zadań, odnotujmy dwie proste własności opisanej operacji.

  19. Stereometria

    Wpisywanie w przestrzeni

    W poprzednim numerze przedstawiliśmy cykl wzajemnie wpisanych trójkątów i dwa wzajemnie wpisane pięciokąty. To było na płaszczyźnie. A teraz będzie przykład wzajemnego wpisania w przestrzeni trójwymiarowej.

  20. Planimetria Mała Delta

    Gwiazda potęgowa

    Dawno, dawno temu żył sobie beztrosko król wraz ze swoją piękną córką. Jak to czasem w zbyt szczęśliwych królestwach bywa, pewnego razu czarnoksiężnik przybył na dwór, żeby porwać królewnę i uwięzić ją w swojej upiornej wieży. Zgodnie z zasadami dobrego wychowania mrocznych czarodziei, do których należał, musiał dać mieszkańcom królestwa możliwość ocalenia królewny przed swoim niecnym planem...

  21. Planimetria

    Wpisywanie

    W geometrii dyskretnej przyjęło się mówić, że wielokąt jest wpisany w inny wielokąt, gdy ma wierzchołki na prostych zawierających boki tego drugiego wielokąta. Od czasu Hilberta tego zwrotu używa się i w przypadku "zwyczajnej" geometrii.