Przeskocz do treści

Delta mi!

  1. obrazek

    Geometria Co to jest?

    Dziewięć twarzy płaszczyzny rzutowej

    W Delcie 6/2011 artykuł Marii Donten-Bury o płaszczyźnie rzutowej został poprzedzony przedstawieniem sześciu jej (płaszczyzny, nie Marysi) postaci, pod jakimi daje się nam ona zaobserwować. Wobec tego, że postacie te są bardzo różnorodne, nasunąć się może wątpliwość, czy faktycznie wszystkie są wcieleniami tego samego matematycznego obiektu. Poniżej jest przedstawiony sposób, jak tę wątpliwość można rozstrzygnąć.

  2. Planimetria

    Wędrówki po okręgu

    Matematycy od wielu lat zajmują się wędrówką po okręgu. Jednym z najbardziej znanych przykładów jest chyba skakanie po nim w określonym kierunku tak, by między kolejnymi punktami, w których się znajdziemy, była określona odległość math (mierzona wzdłuż łuku). Naturalne staje się wówczas pytanie, czy skacząc tak po okręgu, wrócimy kiedykolwiek do punktu wyjścia (widać, że rozwiązanie problemu nie zależy od punktu startowego)? Odpowiedź nasuwa się prędko – powrót nastąpi tylko wówczas, gdy stosunek długości okręgu do liczby math jest liczbą wymierną. Spróbujmy tym razem powędrować w inny sposób, określony geometrycznie.

  3. Stereometria Kącik przestrzenny

    Inwersja w przestrzeni i rzut stereograficzny

    Kiedy na płaszczyźnie mamy do czynienia z okręgami, to bardzo często posługujemy się rachunkiem na kątach, ponieważ znamy wiele przydatnych twierdzeń i faktów z tego zakresu. Niestety, trudno o analogiczne narzędzia w przestrzeni. Stanowi to wielki kłopot, gdy zmagamy się z zadaniami o sferach. Istnieje jednak kilka innych technik, skutecznych w zadaniach o okręgach, które działają również w przestrzeni. Są to: potęga punktu, jednokładność oraz inwersja. O tej ostatniej metodzie opowiemy w tym kąciku.

  4. Stereometria Deltoid

    Okręgi wielkie

    Którędy przebiega najkrótsza droga lotnicza z Warszawy do Vancouveru? Wbrew pozorom – mimo podobnej szerokości geograficznej – wcale nie wzdłuż równoleżnika, a nad Grenlandią, o czym łatwo się przekonać, naciągając nitkę na globusie.

  5. Planimetria

    Okrąg dziewięciu punktów i pewne dwa fakty

    Trzy niewspółliniowe punkty na płaszczyźnie jednoznacznie wyznaczają okrąg, który przez nie przechodzi. Zatem jeśli pewne cztery punkty leżą na jednym okręgu, to jest to fakt godny odnotowania. W geometrii istnieje niezwykle urocze twierdzenie, które mówi, że aż dziewięć szczególnych punktów trójkąta leży na jednym okręgu.