Przeskocz do treści

Delta mi!

  1. Planimetria Deltoid

    Wysokości czworokąta

    Wysokością czworokąta nazwijmy prostą przechodzącą przez środek jego boku i prostopadłą do boku przeciwległego. W niektórych czworokątach wszystkie cztery wysokości przecinają się w jednym punkcie - ortocentrum czworokąta. Przykładowo kwadrat ma ortocentrum, a romb niebędący kwadratem nie ma.

  2. Planimetria Deltoid

    Pasujemy do siebie!

    W wielu zadaniach, w których występują kąty lub ich sumy, przydatne bywa przeniesienie pewnych figur tak, by kąty te znalazły się obok siebie. Szczególnie wygodne jest to wtedy, gdy suma pewnych kątów równa jest np. |90○ lub |360○; a także, gdy niektóre z danych odcinków są równej długości.

  3. Planimetria

    Tak samo, ale zupełnie inaczej

    Geometrzy od dawna marzyli o współrzędnych jednorodnych, czyli takich |n -tkach liczb (dalej dla uproszczenia będzie mowa o parach i trójkach) przyporządkowanych punktom, że gdy wszystkie liczby w n -tce pomnożymy przez tę samą liczbę, to nowa |n -tka będzie współrzędnymi tego samego punktu.

  4. Planimetria

    Przesuwanie w zadaniach olimpijskich

    W tym artykule omówimy pewną bardzo pożyteczną technikę - tzw. przesuwanie. Polega ona na tym, że niektóre obiekty przesuwamy o pewien wektor i udowadniamy, że teza zadania jest niezmiennicza ze względu na wykonanie tej operacji. Ta metoda pozwala na sprowadzenie rozwiązywanego zadania do znacznie prostszego. Bardzo często ten prostszy przypadek ma jakiś rodzaj symetrii, z której łatwo wywnioskować tezę. Zanim przejdziemy do rozwiązywania zadań, odnotujmy dwie proste własności opisanej operacji.

  5. Planimetria Mała Delta

    Gwiazda potęgowa

    Dawno, dawno temu żył sobie beztrosko król wraz ze swoją piękną córką. Jak to czasem w zbyt szczęśliwych królestwach bywa, pewnego razu czarnoksiężnik przybył na dwór, żeby porwać królewnę i uwięzić ją w swojej upiornej wieży. Zgodnie z zasadami dobrego wychowania mrocznych czarodziei, do których należał, musiał dać mieszkańcom królestwa możliwość ocalenia królewny przed swoim niecnym planem...

  6. Planimetria

    Wpisywanie

    W geometrii dyskretnej przyjęło się mówić, że wielokąt jest wpisany w inny wielokąt, gdy ma wierzchołki na prostych zawierających boki tego drugiego wielokąta. Od czasu Hilberta tego zwrotu używa się i w przypadku "zwyczajnej" geometrii.

  7. Planimetria Stowarzyszenie na rzecz Edukacji Matematycznej

    LXVIII OM

    W LXVIII Olimpiadzie Matematycznej uczestniczyło 1495 uczniów, zatem o 324 osoby więcej niż rok wcześniej, do zawodów stopnia drugiego zakwalifikowano 632 uczniów, a do zawodów stopnia trzeciego - 154 uczniów. Zapewne wynika to z pojawienia się w pierwszym stopniu sporej liczby zadań stosunkowo łatwych, a już na pewno niewymagających szczególnego przygotowania...

  8. obrazek

    Rys. 1

    Rys. 1

    Planimetria Deltoid

    Łuki Talesa

    Odcinek AB widać z punktu C pod kątem ff , gdy ?ACB = ff: Z twierdzenia o kątach wpisanych wynika, że jeśli punkty C i D leżą na okręgu po tej samej stronie jego cięciwy AB; to widać ją z C i |D pod tym samym kątem (Rys. 1).

  9. obrazek

    Rys. 1

    Rys. 1

    Planimetria Mała Delta

    Kąty i Okrąg

    Każdy zna twierdzenie o kącie zewnętrznym trójkąta: jest on równy sumie kątów wewnętrznych do niego nie przyległych (Rys. 1), co bierze się z faktu, że suma kątów przyległych jest równa sumie kątów trójkąta. Z twierdzenia tego wynika nietrudno twierdzenie o kącie wpisanym i środkowym: kąt wpisany jest równy 1 2 kąta środkowego opartego na tym samym łuku.

  10. Planimetria Drobiazgi

    Zadanie Alhazena

    Gdy na lustrzaną sferę pada promień światła, odbija się on tak, że kąt między nim a przedłużeniem promienia sfery przechodzącego przez punkt, w którym promień pada, jest równy kątowi między tym przedłużeniem a promieniem odbitym, przy czym wszystko odbywa się w jednej płaszczyźnie wyznaczonej przez padający promień i środek sfery. Geometrycznie sytuacja jest więc dwuwymiarowa.

  11. obrazek

    Planimetria Deltoid

    Niby nic

    W dowolnym trójkącie odcinek łączący środki dwóch boków jest równoległy do trzeciego boku i dwukrotnie od niego krótszy. Ten prosty fakt okazuje się zadziwiająco przydatny.