Przeskocz do treści

Delta mi!

Loading

Ogródek Gardnera

Lehmus, Steiner, Gardner

Zdzisław Pogoda

o artykule ...

  • Publikacja w Delcie: styczeń 2011
  • Publikacja elektroniczna: 20-12-2010
  • Autor: Zdzisław Pogoda
    Afiliacja: Instytut Matematyki, Uniwersytet Jagielloński

Powszechnie znany jest fakt, że w trójkącie równoramiennym dwie dwusieczne mają równe długości, podobnie jak dwie wysokości i dwie środkowe. Naturalne jest pytanie: a odwrotnie, czy równość dwóch ze wspomnianych wielkości gwarantuje równoramienność trójkąta?

Dla dwóch wysokości i dwóch środkowych jest to proste zadanie (może Czytelnik zechce sobie przypomnieć, jak to się robi). Wydaje się, że w przypadku dwóch dwusiecznych też powinno pójść łatwo, a jednak... Jakoś trudno od razu znaleźć prosty geometryczny dowód. Można w ostateczności wykorzystać rachunki, lecz nie o to chodzi. Przed podobnym problemem stanął w 1840 roku Daniel Christian Ludolph Lehmus: jak geometrycznie, bez długich rachunków, udowodnić ten fakt? Wysłał to pytanie do J.Ch.F. Sturma, ten, między innymi, do Jacoba Steinera, który dowód przedstawił. Później pojawiło się wiele innych dowodów, a i sam Lehmus też w końcu twierdzenie udowodnił.

Twierdzenie, nazwane twierdzeniem Steinera–Lehmusa, rozpropagował ponownie Martin Gardner w  Scientific American (nr 204, 1961, str. 166–168) przy okazji recenzji książki H.S.M. Coxetera Introduction to Geometry (znanej w Polsce jako Wstęp do geometrii dawnej i nowej). Otrzymał potem od czytelników setki listów z dowodami. Przeanalizował wszystkie i wybrał, jego zdaniem, najprostszy. Dowód ten, którego autorami byli dwaj angielscy inżynierowie, G. Gilbert i D. McDonnell, można znaleźć w  The American Mathematical Monthly (7, 1963, str. 79–80). Zobaczmy, jak wygląda to rozumowanie. Jego podstawowym pomysłem jest udowodnienie „innego” spostrzeżenia na temat dwusiecznych:

Fakt. Jeśli w trójkącie są dwa różne kąty wewnętrzne, to dwusieczna wychodząca z kąta mniejszego ma większą długość niż dwusieczna wychodząca z kąta większego.

Korzystając z niego, stwierdzamy: skoro trójkąt nierównoramienny ma każdą dwusieczną innej długości, więc taki, w którym dwie dwusieczne są równe, równoramienny być musi.

obrazek

Poszło gładko, więc wypada jeszcze udowodnić spostrzeżenie, z którego skorzystaliśmy. Rozważmy zatem trójkąt math , w którym math . Niech math  i  math będą dwusiecznymi odpowiednich kątów. Na  math wybierzmy taki punkt  math , żeby

display-math

Stąd math . Punkty math , math, mathmath leżą na jednym okręgu, ponieważ math . Teraz zauważmy, że

display-math

A stąd wynika, że math , czyli math . Pierwsza nierówność bierze się stąd, że mniejszemu kątowi wpisanemu w okrąg odpowiada krótsza cięciwa, na której się ten kąt opiera (proszę sprawdzić).

Podobno nieopublikowany dowód Lehmusa wyglądał dokładnie tak samo...

Notice: Undefined index: story_alias_uuid in /home/misc/deltami/public_html/ui/inc/site_php_include/index.inc on line 23 Notice: Undefined index: story_alias_uri in /home/misc/deltami/public_html/ui/inc/site_php_include/index.inc on line 24