Przeskocz do treści

Delta mi!

  1. Planimetria

    Od kwadratu

    Rozpatrzmy dowolny trójkąt oraz cztery kwadraty zbudowane w sposób przedstawiony na rysunku 1. Wówczas zaznaczone kolorem trzy odcinki, łączące odpowiednie wierzchołki kwadratów oraz środek najniższego kwadratu, przecinają się w jednym punkcie.

  2. Planimetria Deltoid

    Mały wybór? I dobrze!

    Izometrią nazywamy przekształcenie, które nie zmienia odległości między punktami. Obrazy trzech niewspółliniowych punktów jednoznacznie ją wyznaczają. Twierdzenie Chaslesa głosi, że każda izometria płaszczyzny jest przesunięciem, obrotem lub symetrią z poślizgiem.

  3. obrazek

    Planimetria

    Siedmiokąta foremnego nie można skonstruować cyrklem i linijką

    ...a pięciokąt foremny można. Obok pokazana jest konstrukcja dziesięciokąta foremnego - kolorowy odcinek ma długość boku dziesięciokąta foremnego wpisanego w większy okrąg, a więc biorąc co drugi z wierzchołków takiego dziesięciokąta, otrzymamy pięciokąt foremny. Konstrukcja jest - jak widać - bardzo prosta. Ma tylko tę wadę, że nie wskazuje, jak konstruować inne wielokąty foremne.

  4. Planimetria

    Prostokąty na trójkącie

    Z twierdzeniem Pitagorasa wszyscy się znamy, budowanie kwadratów na bokach trójkąta prostokątnego nie jest niczym nadzwyczajnym. A co możemy powiedzieć ciekawego o prostokątach skonstruowanych na bokach dowolnego trójkąta?

  5. Planimetria

    Zabawy w kącie

    W każdym zjawisku przyrody można dostrzec dążenie do osiągnięcia jakiegoś maksimum lub minimum. Umiejętność wyznaczania wartości ekstremalnych nie powinna więc być niczym niezwykłym...

  6. Planimetria Deltoid

    Nożyczki matematyczne

    Jedną z najsłynniejszych niemożliwych rzeczy w matematyce jest konstrukcja samym cyrklem i linijką kwadratu o polu równym polu danego koła. Problem ten, zwany kwadraturą koła, rozważano już w starożytnej Grecji, ale rozwiązano go, czyli udowodniono niekonstruowalność, dopiero w XIX wieku.

  7. Planimetria

    Prosto w środek

    Przeciętny uczeń rozpoczyna podróż po fascynującym świecie geometrycznych konstrukcji uzbrojony w linijkę i kątomierz. Kiedy już nauczyciel uzna swojego podopiecznego za wystarczająco odpowiedzialnego, by nie rysował szkolnych ławek (jakże często zbyt naiwne założenie), uczeń dostaje do ręki kolejne narzędzie walki z czystą kartką papieru, jakim jest cyrkiel...

  8. obrazek

    Planimetria Mała Delta

    Pozbądźmy się koła

    Dawno, dawno temu za górami, za lasami na Euklidesowych Równinach żyło sobie koło. Niezmiernie było dumne ze swej stałej szerokości. Chadzało ścieżkami, które miały szerokość równą jego średnicy, i jako jedyna figura zamieszkująca równiny mogło kręcić się przy tym jak szalone, stale podpierając obie krawędzie ścieżki.

  9. obrazek

    Planimetria

    Krótka opowieść o symedianie

    Zechciejcie państwo wysłuchać dziś krótkiej opowieści z królestwa geometrii. Za siedmioma górami matematycznych podręczników, za siedmioma rzekami matematycznych równań, za siedmioma lasami matematycznych sprzeczności znajdowała się symediana. Dziś symediana ujrzy światło dzienne...

  10. obrazek

    Planimetria

    Spróbuj zostać Archimedesem

    Jeden ze sposobów obliczenia pola odcinka paraboli, czyli ograniczonej spośród części, na jakie dzieli płaszczyznę parabola i jej cięciwa, zaproponowany przez Archimedesa, jest następujący: przez środek cięciwy (nazwijmy ją math ) prowadzimy prostą równoległą do osi paraboli i uzyskujemy w przecięciu z parabolą punkt math . Pole odcinka paraboli to math pola trójkąta math Dlaczego tak jest i jak on na to wpadł?

  11. obrazek

    Planimetria Deltoid

    Dwa w jednym

    Powierzchnię pewnego wielościanu rozcięto (niekoniecznie wzdłuż krawędzi) i rozłożono, otrzymując płaski wielokąt o kształcie krzyża. Czy wyjściowy wielościan musiał być sześcianem?