Przeskocz do treści

Delta mi!

  1. obrazek

    Teoria liczb

    Piramida kwadratowych liczb

    Piramidy w starożytnym Egipcie budowano na kształt ostrosłupa prawidłowego o podstawie kwadratu. Jak pokazują źródła historyczne, starożytni Egipcjanie potrafili obliczyć objętość takiego ostrosłupa. Jednak ich dobrze rozwinięta, jak na tamte czasy, matematyka, miała głównie zastosowanie praktyczne i raczej nikt nie formułował pytań, które miałyby na celu jedynie matematyczną rozrywkę. Jednym z matematyków, który szczególnie interesował się rozrywkowymi zastosowaniami królowej nauk, był Édouard Lucas, autor między innymi słynnej gry zwanej Wieżą Hanoi. W niniejszym artykule zwrócimy uwagę na sformułowany przez Lucasa problem z gatunku tych raczej mało praktycznych. Jak zobaczymy, ma on pewien związek z piramidami.

  2. Planimetria

    Wielościany w wielościanach, czyli matematyka eksperymentalna

    Czy istnieje coś takiego jak matematyka eksperymentalna? Zobaczmy. Ten tekst zaczniemy od prostego zadania z geometrii, następnie użyjemy komputera, aby rozwiązać je w przybliżeniu, a na koniec z tego przybliżenia zgadniemy dokładny wynik. Będzie też wiele szczegółów do uzupełnienia dla Czytelników. Programy użyte do eksperymentów można znaleźć w [3].

  3. Logika

    Czułość funkcji logicznych (II)

    W pierwszej części artykułu (Delta 7/2020) omówiliśmy pojęcia funkcji logicznej, jej czułości i przedstawiliśmy, na razie bez dowodów, pewne związane z nimi twierdzenia, udowodnione w pracy [1]. Celem drugiej części jest przedstawienie owych dowodów w wersji nieco uproszczonej w stosunku do oryginalnej pracy [1], ale wciąż wymagającej znajomości podstaw algebry liniowej, w tym mnożenia macierzy i pewnej wiedzy o wymiarze przestrzeni liniowej.

  4. Geometrie nieeuklidesowe

    Jaki jest kształt Wszechświata?

    W stosunku do wielkości Ziemi wszystkie ziemskie nierówności (łańcuchy górskie, doliny) to znikome, zaniedbywalne zniekształcenia. Ponieważ w naszej skali nasze bliskie otoczenie przypomina płaską powierzchnię, więc nie powinno nas dziwić, że pierwsze geometryczne rozważania dotyczyły płaszczyzny.

  5. Zastosowania matematyki Co to jest?

    Efekty nieliniowe dla rowerzystów

    W matematyce często rozróżnia się rzeczy liniowe od nieliniowych. W szkole uczy się o funkcjach liniowych i nieliniowych, ale te pojęcia są dużo szersze i oprócz teorii dotyczą także wielu sytuacji praktycznych. Układ liniowy można przeanalizować w ten sposób, że rozkłada się go na części, analizuje działanie każdej z nich osobno, a na końcu dodaje do siebie poszczególne wyniki. W układzie nieliniowym taka analiza może dać niepoprawne wyniki.

  6. Planimetria

    O problemie sadu bez prześwitów

    W 1918 roku George Pólya opublikował artykuł Zahlentheoretisches und wahrscheinlichkeits-theoretisches über die Sichtweite im Walde, w którym rozważał następujący problem (w literaturze anglojęzycznej nosi on nazwę Orchard Visibility Problem).

  7. obrazek

    By Museo internazionale e biblioteca della musica di Bologna

    Archicembalo

    By Museo internazionale e biblioteca della musica di Bologna

    Archicembalo

    Zastosowania matematyki Matematyczny kącik myzyczny

    Jak dobrze nastroić klawesyn?

    W poprzednim artykule (Delta 7/2020) pokazaliśmy, czym są interwały naturalne (wynikające z szeregu alikwotowego) oraz to, że przy użyciu do strojenia instrumentu tylko oktaw i kwint czystych "koło się nie zamknie". W pewnym momencie zaczęło to sprawiać problem - odkąd pojawiła się w muzyce europejskiej muzyka wielogłosowa i operowanie trójdźwiękiem. Czysty trójdźwięk durowy (jak go obecnie nazywamy) składa się oczywiście z trzech dźwięków...

  8. Topologia

    Elementarnie o twierdzeniu Brouwera

    Tytułowe twierdzenie sformułujemy dla trójkąta (z brzegiem) na płaszczyźnie euklidesowej  2 R : Jest to najsłynniejsze i najważniejsze twierdzenie w topologicznej teorii punktów stałych o rozlicznych zastosowaniach (w równaniach różniczkowych, topologii, ekonomii, teorii gier, analizie funkcjonalnej). Jego odkrycie miało ogromny wpływ na rozwój wielu gałęzi matematyki, szczególnie topologii algebraicznej.

  9. Kryptologia Nowości z przeszłości

    Uniwersalny szyfr

    W naszych czasach coraz więcej rzeczy staje się tajnych. To dlatego, że nasze życie jest coraz bardziej uzależnione od setek i tysięcy drobiazgów, a kontrolę nad nimi każdy chce zachować dla siebie. Przyjdzie może czas, kiedy na posiadanie tablic logarytmicznych wymagane będzie zezwolenie. Żarty? Mam nadzieję. Na razie grozi nam utajnienie tablic rozkładów liczb na czynniki pierwsze. A oto dlaczego...

  10. Algebra

    Podróże w Rd

    ... Uważam, że jednostronnicowy dowód Sergeya Sevastianova jest wyjątkowy. Pál Erdős często odwoływał się do Księgi, w której Bóg trzyma wszystkie najelegantsze dowody. Zainspirowani tym matematycy, Aigner i Ziegler, wydali znakomitą książkę Dowody z Księgi, którą wszystkim szczerze polecam. Dowód Sevastianova mógłby również trafić do tej Księgi. Mimo że ja i moi koledzy rozumiemy każdy krok tego dowodu z osobna, to nie wiemy, skąd bierze się taki sposób rozumowania, niespotykany nigdzie indziej w naszej dziedzinie. Wierzę, że zrozumienie idei ukrytych w tym dowodzie może przyczynić się do kolejnych ciekawych wyników. Kto wie, może ktoś z Czytelników pomoże?

  11. obrazek

    Leonardo Fibonacci (1170-1240)

    Leonardo Fibonacci (1170-1240)

    Teoria liczb Rachunki

    Fibonacci spotyka Banacha

    Fibonacci (właściwie Leonardo z Pizy, ok. 1170-1240) nauczył się zasad arytmetyki hindusko-arabskiej, gdy razem z ojcem przebywał w Bougie (obecnie algierska Bidżaja). Poszerzał swoją wiedzę podczas podróży do Egiptu, Syrii, Grecji, na Sycylię, do Prowansji. Gdy osiadł w Pizie, w 1202 roku napisał traktat Liber Abaci (Księga rachunków), z myślą o rozpowszechnieniu w Europie notacji dziesiętnej opartej na wykorzystaniu cyfr 0,1,2, ...,9. Pokazał w nim użyteczność nowych metod na wielu przykładach rachunkowych, szczególnie związanych z przeliczaniem miar i wag, obliczaniem zysków i odsetek, wymianą pieniędzy...

  12. Teoria liczb

    Ziemiolubne liczby i ulotne reszty

    Człowiek twardo stąpa po ziemi, a z nim pojęcia, które stworzył. Na przykład liczby są tylko tym, do czego człowiekowi służą: porządkowe, kardynalne i inne. W skończonych zastosowaniach są to liczby naturalne 1, 2, 3, ... i ich uogólnienia: liczby całkowite, wymierne, rzeczywiste i zespolone. Słowo skończone w poprzednim zdaniu odnosi się wyłącznie do opisywanego atrybutu liczonego obiektu: a to jego rangi, a to mocy, a to fizycznych rozmiarów. W matematyce teoretycznej liczb praktycznie zawsze potrzebujemy nieskończenie wiele!

  13. obrazek

    Stereometria

    Czego jeszcze nie wiedzieliśmy o bryłach platońskich?

    "Bryły platońskie" to inna nazwa wielościanów foremnych. W przestrzeni trójwymiarowej jest ich dokładnie 5 i są to: czworościan, sześcian, ośmiościan, dwunastościan oraz dwudziestościan foremny. Ich historia sięga czasów starożytnych i wydawałoby się, że po ponad dwóch tysiącach lat wiemy o nich już absolutnie wszystko.