Przeskocz do treści

Delta mi!

  1. Teoria liczb

    Trójkąt harmoniczny – bliźniak trójkąta Pascala

    Trójkąt Pascala zna praktycznie każdy. Widoczny poniżej z lewej strony trójkąt ma tę własność, że każda liczba jest sumą dwóch liczb stojących bezpośrednio nad nią (z wyłączeniem wierzchołka trójkąta oraz jego prawego i lewego boku, gdzie znajdują się jedynki). Z kolei w trójkącie po prawej stronie każda liczba jest sumą dwóch liczb stojących bezpośrednio pod nią. Na jego prawym oraz lewym boku znajdują się odwrotności kolejnych liczb naturalnych - liczby harmoniczne. Taki obiekt nazywa się trójkątem harmonicznym. Konstrukcję obu trójkątów można oczywiście kontynuować w nieskończoność...

  2. obrazek

    Teoria liczb

    Trudniej, a łatwiej

    Są twierdzenia łatwe i trudne do udowodnienia. Zazwyczaj im mocniejsze sformułowanie, obejmujące więcej przypadków, tym trudniej się je dowodzi. Tak jest na przykład z twierdzeniem cosinusów i twierdzeniem Pitagorasa, które jest jego szczególnym przypadkiem. Łatwiej jest udowodnić twierdzenie Pitagorasa; można to zrobić nawet w sposób zrozumiały dla przedszkolaka (zobacz rysunek obok). Do dowodu twierdzenia cosinusów trzeba przynajmniej wiedzieć, co to cosinus, w szczególności kąta rozwartego.

  3. Teoria liczb

    Mały Gauss

    Już rok po śmierci Gaussa (w 1856 r.) ukazała się książka wspomnieniowa jego wieloletniego przyjaciela Wolfganga Sartoriusa von Waltershausena Zum Gauss Gedächtniss. Trzeba o niej wiedzieć co najmniej z dwóch powodów. Stąd pochodzi najsłynniejszy aforyzm z matematyką w roli głównej. Jako teoretyk liczb przytoczę go z przyjemnością w pełnej postaci: Matematyka jest królową nauk, a arytmetyka królową matematyki.

  4. Teoria liczb

    Sumy kwadratów wielomianów

    Suma kwadratów najczęściej kojarzy się nam z twierdzeniem Pitagorasa - słusznie, ale warto wiedzieć, że temat ten ma swoje miejsce również w teorii liczb, gdzie interesuje nas, czy daną liczbę całkowitą można przedstawić w postaci sumy kwadratów innych liczb całkowitych. Intrygujące jest również pytanie, ile składników znajduje się w tej sumie. Osiągnięcia w tym zakresie mieli między innymi Fermat, Euler i Lagrange...

  5. Teoria liczb

    Szereg Leibniza i punkty kratowe

    Powiążemy tu wzór Leibniza

    ß- 1- 1- 1- 1- 4 = 1 − 3 + 5 − 7 + 9 + :::

    z geometrią (pola) i teorią liczb. Tekst jest wyraźnie dłuższy od tego, który jest w książce Hilberta i Cohn-Vossena, bo szkicujemy dowód twierdzenia z teorii liczb, na które autorzy jedynie powołują się. Pozostawimy jednak bez dowodu niektóre bardzo znane twierdzenia z teorii liczb, ze względu na ograniczenia miejsca w miesięczniku. Zaznaczyć warto, że podawany zwykle studentom pierwszego roku dowód jest krótszy, ale zdaniem autora tego tekstu, nie pokazuje związku z geometrią, który jest mocno sugerowany obecnością |ß we wzorze.

  6. obrazek

    Pierre de Fermat (1601-1665)

    Pierre de Fermat (1601-1665)

    Teoria liczb

    Twierdzenia Fermata różnej wielkości

    Pierre de Fermat był Francuzem i żył w pierwszej połowie XVII wieku (1601-1665). Jako radca prawny praktykował w sądzie w Tuluzie na południu Francji. Naukami ścisłymi, a w szczególności matematyką, interesował się jako amator, ale wniósł potężny wkład do ich rozwoju. Szczególnie spektakularne są jego osiągnięcia w teorii liczb i o nich traktuje niniejszy artykuł. Wszyscy wiedzą, że jest Wielkie Twierdzenie Fermata (WTwF), Małe Twierdzenie Fermata (MTwF) i jeszcze inne twierdzenia Fermata dotyczące teorii liczb - ale które z nich jest największe?

  7. Teoria liczb Mała Delta

    Resztki

    Skończyłam! - krzyknęła triumfalnie Agatka do swojego brata, Bartka. Dziewczynka regularnie domaga się od starszego chłopca rozmaitych ciekawostek matematycznych, których ten dowiaduje się w liceum...

  8. Teoria liczb

    Złociaków nigdy dosyć

    Wyobraźmy sobie, że trafiliśmy do dziwnego kraju, w którym jedynymi dostępnymi środkami płatniczymi są monety o nominałach |a i b: Formy płatności nie rozwinęły się na tyle, żeby płacić kartą lub czekiem, na domiar złego wybraliśmy się do cukierni, w której kasa jest zupełnie pusta i sprzedawca nie może wydać nam reszty. Nie chcąc tracić swoich złociaków, rozglądamy się za pysznościami w cenach |a + a;a + b;xa + yb ::: Niektórych kwot, oczywiście, nie daje się uzyskać z nominałów  a i |b; a niektóre można otrzymać na wiele sposobów.

  9. obrazek

    Teoria liczb Drobiazgi

    Rozsądnego algorytmu brak

    Na obrazku widać przenumerowanie szesnastu z 17 równo rozmieszczonych punktów na okręgu. Obok "normalnych" czarnych numerków podano dziwnie rozmieszczone czerwone. Zrobiono to w ten sposób, że nawinięto na ten okrąg półprostą, na której zaznaczono punkty odpowiadające kolejnym potęgom 3.

  10. Algebra

    Combinatorial Nullstellensatz w teorii liczb

    W Delcie 7/2017 przedstawiliśmy kilka "olimpijskich" zastosowań twierdzenia Combinatorial Nullstellensatz. Okazuje się, że zamiast "zwykłych" wielomianów wielu zmiennych możemy rozważać wielomiany o współczynnikach będących resztami z dzielenia przez pewną liczbę pierwszą |p; z dodawaniem i mnożeniem modulo p: Poniżej przedstawimy trzy klasyczne twierdzenia, których proste dowody są oparte na Combinatorial Nullstellensatz w wersji "resztowej". Twierdzenia te są szczególnie bliskie zastosowaniom olimpijskim.

  11. obrazek

    Teoria liczb Mała Delta

    Obsesja dużych liczb

    Kiedy miałem kilka, kilkanaście lat, wraz ze starszym bratem często graliśmy w grę. Należało w swojej kolejce podać liczbę większą od wskazanej przez poprzednika. Przegrywał oczywiście ten, kto nie był w stanie podać liczby większej. Czasami ponosiła nas fantazja i mówiliśmy "nieskończoność" albo "nieskończoność plus nieskończoność". Dziś już wiem, że nieskończoność liczbą nie jest, a działania na nieskończonościach są bardziej wyrafinowane, niż podejrzewałem. Gdyby i Tobie, drogi Czytelniku, przyszło kiedyś wymienić (albo usłyszeć) jakąś dużą liczbę, możesz sięgnąć do poniższej listy. Nie są to bowiem byle jakie liczby...