
Załącznik do omówienia ligi matematycznej
w roku szkolnym 2024/25

Spis rozwiązań:

• Zad. 893:
Punkty A,B,C,D,E leżą w tym porządku na linii prostej, przy czym CA = CE, CB = CD. Poza

tą prostą, po jednej jej stronie, leżą punkty K i L takie, że trójkąty AKB i DLE mają ostre kąty

przy wierzchołkach A,B i D,E, a suma miar tych czterech ostrych kątów wynosi 180◦. Proste KB

i LD przecinają się w punkcie N ; proste AK i EL przecinają się w punkcie M ; punkty M,N leżą po

różnych stronach prostej KL, a ponadto MN ⊥ AE. Dowieść, że CK = CL.

→ Barbara Mroczek (str. 2)

• Zad. 897:
Czworokąt wypukły ABCD ma obwód długości p oraz przekątne długości m i n. Punkt E jest

czwartym wierzchołkiem równoległoboku ABCE. Udowodnić, że DE ¬ p−m− n.

→ Janusz Olszewski (str. 4)
→ Piotr Kumor (str. 7)

• Zad. 902:
Dla liczby naturalnej n niech w(n) oznacza największy całkowity wykładnik, dla którego n! dzieli się

przez 10w(n), i niech f(n) = 10−w(n)n!. Udowodnić, że dla każdej liczby naturalnej m spełniona jest

zależność f(5m) ≡ 2m (mod 5).

→ Jerzy Cisło (str. 13)



Barbara Mroczek Zadanie M894

Niech ω1 oznacza okrąg KLM o środku w punkcie F . Niech ω2 oznacza
okrąg ABK o środku w punkcie G. Niech ω3 oznacza okrąg DEL o środku
w punkcie H. Niech O będzie środkiem odcinka AM . Niech Q będzie przecię-
ciem okręgów ω1 i ω2 różnym od K. Niech R będzie przecięciem odcinków MN
i AE.

Czworokąt KLMN ma dwa kąty zewnętrzne przy wierzchołkach K i L sumu-
jące się do 180◦, więc jest wpisany w okrąg. Innymi słowy, punkt N leży na
okręgu ω1.

Okręgi ω2 oraz ω3 mają na równych cięciwach AB i DE oparte kąty wpisane
∢AKB i ∢DLE, które dopełniają się do 180◦. Zatem te dwa okręgi są przys-
tające, w szczególności mają równe promienie oraz są do siebie symetryczne
względem punktu C.

Zauważmy, że zachodzi równość

∢AQM = ∢AQK + ∢KQM = ∢ABK + ∢KNM = ∢NBR+ ∢BNR = 90◦.

W takim razie punkt O jest środkiem okręgu przechodzącego przez punkty
A, Q, R i M .

Zachodzi także

∢KGQ+ ∢KFQ = 2 · ∢KAQ+ 2 · ∢KMQ = 2 · ∢MAQ+ 2 · ∢AMQ =

= ∢MOQ+ ∢AOQ = 180◦.

W takim razie ∢GKF +∢GQF = 180◦, a ponieważ są to kąty równe, to oba
te kąty są proste. Analogicznie ∢HLF = 90◦. W takim razie trójkąty △GKF
i △HLF są prostokątne, mają jedną parę przyprostokątnych KF , LF równą
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Barbara Mroczek Zadanie M894

jako promienie okręgu ω1 oraz drugą parę przyprostokątnych KG, LH równą
jako promienie okręgów przystających ω2 i ω3. Zatem te trójkąty są przystające
i zachodzi równość FG = FH, czyli punkt F leży na symetralnej odcinka GH.
Punkt C jest środkiem tego odcinka, zatem prosta CF jest jego symetralną.
W symetrii względem prostej CF okręgi ω2 i ω3 są symetryczne, a okrąg ω1

przechodzi na siebie, zatem odpowiadające punkty przecięcia K i L także są
symetryczne. W szczególności zachodzi równość CK = CL.
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Janusz Olszewski

Zadanie nr 897 (Delta nr 3 (610) 2025)
Czworokąt wypukły ABCD ma obwód długości p oraz przekątne długościm i n.
Punkt E jest czwartym wierzchołkiem równoległoboku ABCE. Udowodnić, że
DE ¬ p−m− n.

Rozwiązanie

Sposób 1. (nierówność trójkąta, własność równoległoboku)
Możemy założyć, że jeden z odcinków AE lub CE przecina jeden z odcinków
CD lub DA. Jeśli bowiem, tak nie jest, wówczas zachodzi jedna z sytuacji
przedstawionych na rys. 1 lub rys. 2.
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rys. 2

Weźmy punkt E′ symetryczny względem środka boku AD. Wówczas w
−−→
DE′ =−−→

CB =
−→
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−−→
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CD.
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rys. 3
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rys. 4

Gdy punkt D leży poza równoległobokiem ABCE (rys. 3) wówczas odcinki
BE′ i AD przecinają się. Zaś gdy punkt D leży wewnątrz równoległoboku
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ABCE (rys. 4), wówczas odcinki DE′ i AB przecinają się. Przy czym w każ-
dym przypadku DE = DE′. Tym samym badanie nierówności dla piątki punk-
tów A,B,C,D,E jest równoważne badaniu tej nierówności dla piątki punktów
A,B,C,D,E′ gdyż DE = DE′.
Dla ustalenia uwagi, załóżmy, że odcinki AE i CD przecinają się. Punkt ich
przecięcia oznaczmy przez X(rys. 5).

Z nierówności trójkąta dla△DXE,△AXC,
i △ABD otrzymujemy

DE ¬ DX +XE

AC ¬ AX +XC

BD ¬ BA+AD

D

A
B

C
E

X

rys. 5
Dodając stronami otrzymane nierówności mamy

m+ n+DE = BD +AC +DE

¬ (DX +XC) + (AX +XE) +BA+AD

= DC +AE +BA+AD

= CD +BC +AB +DA = p.

Jest to nierówność z zadnia.

Sposób 2. (nierówność trójkąta, podobieństwo, własność równoległoboku)
Niech M i N będą środkami przekątnych AC i BD (rys. 6).
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rys. 7

Zauważmy, że punkt M jest także środkiem przekątnej BE równoległoboku
ABCE, a punkt N środkiem odcinka BD. Dlatego odcinki MN i DE są rów-
nolegle oraz 2MN = DE. Nierówność z zadania możemy zapisać w postaci.

AB +BC + CD +DA ­ AC +BD + 2MN (1)
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Oznaczmy środki przeciwległych boków AD i BC przez P i Q (rys. 7). Czwo-
rokąt MPNQ jest równoległobokiem (być może zdegenerowanym do odcinka -
w przypadku gdy czworokąt ABCD jest równoległobokiem). Możemy założyć,
że punkty M,N leżą bliżej wierzchołków C,D niż punkt przecięcia przekątnych
oraz prosta MN przecina odcinek QC w punkcie M ′ (gdy M = N wówczas
wybieramy prostą MN =MC). Konfigurację tę przedstawia rys. 7.
Wówczas z nierówności trójkąta dla △MM ′C, △NQM ′ otrzymujemy

NM+MC ¬ NM+(MM ′+M ′C) = NM ′+M ′C < (NQ+QM ′)+M ′C = NQ+QC

Ponadto z nierówności trójkąta dla △DPN mamy DN ¬ DP + PN.
Dodając otrzymane nierówności stronami dostajemy

DN +NM +MC ¬ DP + PN +NQ+QC.

Uwzględniając związki: BD = 2DN, AC = 2MC, AB = 2DP, BC = 2QC,
CD = 2NQ, DA = 2DP otrzymujemy nierówność (1) równoważną nierówności
z zadania.

Sposób 3. (nierówność Hlawki)
Oznaczmy a⃗ =

−−→
AB =

−−→
EC, b⃗ =

−−→
BC =

−→
AE, c⃗ =

−−→
CD, d⃗ =

−−→
DA.

Wówczas d⃗ = −(⃗a+ b⃗+ c⃗), −−→BD = b⃗+ c⃗, −→AC = a⃗+ b⃗, −−→DE = −(c⃗+ a⃗).
Podstawiając powyższe wektory w nierówności Hlawki

∥a⃗∥+ ∥⃗b∥+ ∥c⃗∥+ ∥a⃗+ b⃗+ c⃗∥ ­ ∥a⃗+ b⃗∥+ ∥⃗b+ c⃗∥+ ∥c⃗+ a⃗∥

(prawdziwej dla dowolnych wektorów a⃗, b⃗, c⃗ w przestrzeni kartezjańskiej, w tym
w szczególności na płaszczyźnie) oraz uwzględniając, że

p = ∥a⃗∥+ ∥⃗b∥+ ∥c⃗∥+ ∥d⃗∥, m = ∥−→AC∥, n = ∥−−→BD∥, DE = ∥−−→DE∥

otrzymujemy nierówność z zadania: p ­ m+ n+DE.

Komentarz.
Dowód nierówności Hlawki można znaleźć w wielu źródłach. W klasycznej książ-
ce Dragoslava S. Mitrinovića „Elementarne nierówności” wskazano na str. 295-
296 uogólnienia oraz kilka odsyłaczy. Wpisując w przeglądarce hasło Hlawka
inequality otrzymujemy na przykład
https://www.cut-the-knot.org/arithmetic/algebra/Hlawka.shtml,

gdzie podano dwa dowody algebraiczne oraz stronę
https://www.cut-the-knot.org/m/Geometry/GeometricHlawka.shtml,

gdzie podano dowód geometryczny nierówności w wersji wykorzystanej w spo-
sobie 3 tj. dla wektorów na płaszczyźnie.
Dowody podane w sposobach 1 i 2 są w zasadzie dowodami geometrycznymi
nierówności Hlawki dla wektorów na płaszczyźnie.



 

Piotr Kumor                                                                      
                                                                                                        

 

897.  Czworokąt wypukły ABCD  ma obwód długości p oraz przekątne 

długości m  i n . Punkt E  jest czwartym wierzchołkiem równoległoboku 

ABCE . Udowodnić, że  pDEnm  . 

 
Rozwiązanie 
 
Teza zadania 897 jest równoważna nierówności (H) znanej jako  
,, nierówność Hlawki ‘’   lub  ,, nierówność Hornischa – Hlawki  ‘’. 

Nierówność (H) jest sformułowana dla wektorów x , y , z   

w rzeczywistej przestrzeni liniowej unormowanej,  
jako uogólnienie nierówności trójkąta. Oto warunek (H) : 

     
Zadanie 897 redukuje się do tej nierówności, następująco : 
W rzeczywistej płaszczyźnie dwuwymiarowej, rozważmy wektory :  



 ABx  , 



 BCy  ,  



 CDz . 

Zatem  



 DAzyx  , 



 ACyx  , 



 BDzy  , 

oraz    



 DEzx   
( najłatwiej sprawdzić to rachunkiem współrzędnych ). 
 

Mamy więc równości :  DEnm  
 

    
 

oraz   DACDBCABp      

                          
 
z których wynika, że teza zadania 897 to dokładnie nierówność (H)  

dla wektorów   


 ABx  , 


 BCy  ,  


 CDz . 
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Nierówność (H) nie jest ogólnie prawdziwa we wszystkich  
rzeczywistych przestrzeniach liniowych unormowanych. 
Jednak jest ona prawdziwa w każdej przestrzeni wymiaru jeden lub dwa. 
( czyli równoważnie dla każdej trójki wektorów liniowo zależnych ). 
Zostało to udowodnione w pracy : 
 

 
 
Link : 
https://www.semanticscholar.org/paper/Two-Dimensional-Spaces-are-Quadrilateral-Spaces-

Kelly-Smiley/a091e10843634deee8eb2dfff70507e5f0ac6da2 

 

Dowód ten jest krótki i elementarny. 
Na dwóch zdjęciach poniżej widać go w całości. 
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W ten sposób rozwiązanie zadania 897 dobiegło końca. 
 
Uwaga 1 
Z dowodu widać, że jest to prawda dla każdej normy na płaszczyźnie. 
Nie musi to więc być norma euklidesowa, czyli zwykła odległość. 

Nie jest też istotne założenie, że punkty  A , B , C , D  to wierzchołki 
czworokąta wypukłego. Nie było ono nigdzie wykorzystane. 
Rozwiązanie działa dla dowolnej czwórki punktów płaszczyzny. 
 
Uwaga 2 

Odcinek DE  jest dwa razy dłuższy niż odcinek łączący środki 

przekątnych AC  i BD . Zachodzi też odpowiednia równość wektorów. 
Najłatwiej stwierdzić to wykonując rachunek na współrzędnych. 

Zatem w treści zadania 897 można zastąpić  DE  przez podwojoną 
długość wspomnianego odcinka. 
W tej wersji zadanie wystąpiło jako Problem 11841 konkursu 
,,American Mathematical Monthly ‘’ : 
 
https://www.tandfonline.com/doi/abs/10.4169/amer.math.monthly.122.5.500 
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Nie dotarłem do ,,firmowego’’ rozwiązania w AMM. 
Jednak rozwiązanie jest też dostępne pod adresem : 
https://www.cut-the-knot.org/m/Geometry/HlawkaInConvexQuadrilateral.shtml 
 

To dowód nierówności Hlawki w przestrzeni wymiaru dwa,  
ze zwykłą odległością euklidesową. Rachunek na liczbach zespolonych. 

Jest tam też udowodnione, że gdy czworokąt ABCD  jest wypukły  
( jak w treści zadania 897 ) to nierówność jest ostra. 

Więcej : pozostaje ona ostra, dla każdej czwórki punktów A , B , C , D  
z których żadne trzy nie są współliniowe. 
 
 

Uwaga 3 
To ostatnie nie jest prawdą dla każdej normy w wymiarze dwa. 

Na przykład, gdy norma wektora ),( yx  jest określona wzorem : 

max ( x  , y  ) ( tzw. norma maksimum ), to dla czworokąta wypukłego 

ABCD  o wierzchołkach  A  )0 , 0( , B   )0 , 1( , C  )1 , 2( , D  )2 , 2(  

mamy E  )1 , 1(  oraz równości  AB  BC  CD  1 , DA  2  , DE  1,  

AC  2  , BD  2 . Zatem  DACDBCAB 5  DEBDAC  , 

więc w czworokącie wypukłym ABCD  zachodzi równość. 
 
 
Uwaga 4 
Nierówność Hlawki nie jest ogólnie prawdziwa, gdy wymiar przestrzeni 
przekracza dwa. Przykładem może być norma maksimum w wymiarze 

trzy. Cztery punkty  A  )0 ,0 , 0(  ; B  )0 ,1 , 1(  ; C  )1 ,1 , 2(  ; 

D  )2 ,2 , 2(  nie leżą w jednej płaszczyźnie. Mamy E  )1 ,0 , 1(   

oraz równości  AB  BC  CD  1 ; DA  2  ; DEBDAC   2 . 

Zatem  DACDBCAB 5  6  DEBDAC  , 
więc nierówność Hlawki i teza zadania 897 nie są prawdziwe.  
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Uwaga 5 
Jednak nierówność Hlawki ( więc także teza 897 ) jest prawdziwa  
dla dowolnych wektorów w każdej przestrzeni,  
której norma jest określona przez iloczyn skalarny. 
W szczególności więc w przestrzeni euklidesowej dowolnego wymiaru. 
Fakt ten jest udowodniony w wielu miejscach. 
Zacytujemy tutaj pracę : ,, A survey of the Hornich – Hlawka inequality ‘’ 
dostępną pod adresem  https://arxiv.org/abs/2407.03278 

Dowód jest na samym początku tej pracy, na pierwszej stronie. 
Jest oparty na tożsamości z iloczynem skalarnym,  
jest więc on prawdziwy w każdej takiej przestrzeni. 
Wynika też z niego, że nierówność jest ostra,  
gdy wektory nie są współliniowe. 
 
 
Uwaga 6 
Zatem także teza zadania 897 jest prawdziwa dla czwórki punktów  

A , B , C , D  w każdej przestrzeni z normą daną przez iloczyn skalarny. 
W szczególności w przestrzeni euklidesowej dowolnego wymiaru. 
Ostatnie zdanie jest nieco na wyrost, oczywiście można ograniczyć się  

tu do przestrzeni trójwymiarowej. Jeżeli zaś punkty A , B , C , D   
nie leżą w jednej płaszczyźnie, to nierówność jest ostra. 
 
 
Uwaga 7 
Wszystkie powyższe rozważania nie były do końca elementarne. 
Z uwagi na sam ich język :  ,,wektory’’ ,  ,,przestrzenie’’ ,  
,,iloczyny skalarne ‘’ etc … 
W przypadku odległości euklidesowych ( oryginał 897 ) 
można tego wszystkiego uniknąć rozważając tylko długości odcinków  
i nierówności w liczbach rzeczywistych.  
W pracy zacytowanej w uwadze 5, na stronie 12 jest udowodniony 
Lemat 3. Otrzymujemy z niego rozwiązanie zadania 897  
( a także nierówność Hlawki dla iloczynów skalarnych ) przyjmując jako 

liczby a, b, c, d, x, y, z  długości odcinków AB , BC ,CD  , DA , AC , 

BD , DE . Warunki (i) oraz (ii) to po prostu nierówności trójkąta, 
natomiast nierówność (iii) to w istocie równość znana jako  
,, uogólniona równość równoległoboku ‘’.  
Jest ona prawdziwa dla iloczynu skalarnego,  
a także łatwa do sprawdzenia rachunkiem na współrzędnych.   
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Uwaga 8 
Powstaje pytanie kiedy w nierówności zadania 897  
ma miejsce równość ? 
W przypadku ogólnym ( dowolne normy ) nawet nie szukałem  
odpowiedzi. Uwaga 3 pokazuje, że może to być trudne. 
Jednak w przypadku zwykłej odległości znalazłem ( jak myślę )  
pełną odpowiedź. Otóż równość zachodzi wtedy i tylko wtedy,  
gdy ma miejsce jeden z dwóch ( rozłącznych ) przypadków (*) albo (**). 
 
(*)   Alternatywa czterech równości punktów : 

                  A  B    ;   B  C    ;   C  D     ;   D  A   

Równoważnie  0 DACDBCAB  więc odpowiada to sytuacji  
gdy co najmniej jeden z wektorów jest zerowy. 
Nierówność Hlawki jest wtedy oczywiście równością. 
 

(**)  Punkty A , B , C , D  są parami różne i leżą na jednej prostej  
        w określonej kolejności. Kolejność tę podajemy poniżej 
        w punktach (1) – (4)  i  (1’) – (4’). 
 
 

(1)     A , B , C , D                           (1’)     D , C , A , B    
 

(2)     D , A , B , C                            (2’)    C , B , A  , D  
 

(3)     C , D , A , B                            (3’)    B , A , D  , C  
 

(4)    A , D , C ,  B                            (4’)    B , C , D  , A  
     
 
Sprawdzenie że istotnie w powyższych przypadkach zachodzi równość 
jest natychmiastowe. 



Rozwiązanie zadania nr 902

(5n)! jest iloczynem kolejnych dodatnich liczb całkowitych.
1/5 z czynników, czyli 5n−1 czynników, dzieli się przez 5.
Oznaczmy iloczyn czynników niepodzielnych przez 5 literą Q. Mamy

(5n)! = Q · 55n−1 · (5n−1)!.

Dalej wystarczy nam reszta z dzielenia przez 5 liczby

Q · 55n−1 : 105n−1 = Q : 25n−1
.

Ponieważ 2 ·3 ≡ 1 (mod 5), więc zamiast dzielić Q przez potęgę 2, możemy
pomnożyć Q przez taką samą potęgę 3. Czynniki Q niepodzielne przez 5
możemy zastąpić resztami z dzielenia przez 5.

Q · 35n−1 ≡ (1 · 2 · 3 · 4)5n−1 · 35n−1 ≡ 25n−1 ≡ 2 (mod 5),

gdzie na koniec skorzystaliśmy z relacji 25 ≡ 2 (mod 5).
Możemy teraz napisać wzór rekurencyjny (f jest określone w treści zadania):

f(5n) ≡ 2 · f(5n−1) (mod 5), f(1) = 1,

z którego od razu wynika, że

f(5n) ≡ 2n (mod 5).

Jerzy Cisło


