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Zapis [x] oznacza najmniejszg liczbe
calkowitg nie mniejsza od z, czyli

[z] =1 <z < [z]. Warto$é¢ [x] nazywa
sig czasem sufitem liczby x.

Przykladowy poliapez (oktapez) oraz jego
uwypuklenie. Przerywane linie oznaczaja

brzegi minimalnych paséw. Zgodnie

z przedstawiong w tekscie konwencjg ten

poliapez ma obwéd 10, pole 8,

a ograniczaja go pasy o szeroko$ciach 2, 4
i3.

Rzqd w poliapezie to jego czes¢ wspdlna
z pasem o szerokosci 1, w dowolnym
z trzech kierunkéw.

O obwodach poliapezéw
Piotr PIKUL*

W artykule O obwodach poliomin (zob. AS,) wyprowadzilismy jawny wzér na
minimalny obwo6d ksztaltu ulozonego z n kwadratowych kafelkéw (kwadratéw
jednostkowych), wynoszacy 2 [2/n]. Zapowiedzieli§my wéwczas, ze po

tym tagodnym wprowadzeniu w metody szacowania obwodow zmierzymy

sie z bardziej skomplikowanym przypadkiem kafelkéw tréjkatnych. Stowa
dotrzymujemy i zapraszamy do lektury.

Na poczatku wypadaloby jeszcze wyjasni¢ pochodzenie obecnego w tytule
terminu ,,poliapez”. Figury zlozone z tréjkatéw réwnobocznych zwyklo nazywaé
sie ,,poliamondami”, poniewaz po angielsku dwa tréojkaty tworza ,,di-amond”
(karo, ¢). Skoro jednak ,diament” nie jest w Polsce zwyczajowa nazwa rombu,
mozemy nazywaé konfiguracje tréjkatéw ,poliapezami”, poniewaz trzy tworza
Htr(i)-apez”.
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Ksztalty utozone z 1-5 tréjkatéw réwnobocznych, czyli monapez, diapez, triapez, 3 tetrapezy
i 4 pentapezy

Poczatkowe wartosci ciggu minimalnych obwodéw odpowiadajacych kolejnym
liczbom tréjkatnych kafelkéw wynosza: 3,4,5,6,7 i znowu 6 — z szesciu trojkatéw
mozemy ulozy¢ szesciokat foremny. Oczywiscie dla tak malej liczby pol

mozna recznie sprawdzaé wszystkie uklady, ale i tak warto sie zastanowié,
dlaczego ,,nagle” obwdd si¢ zmniejsza. Albo inaczej: czy minimalny obwéd 7
dla pieciu pdél mozna wyznaczy¢ prosciej? Mozna: z uktadem kafelkow skojarzmy
graf odpowiadajacy temu, ktére pola posiadaja wspélny bok. Zauwazmy, ze
najkrétszy cykl, jaki moze w takim grafie wystapié¢, ma dlugos¢ 6, poniewaz
zawsze skrecamy o 60° i potrzebujemy co najmniej 6 takich zakretéw, aby
wykonaé¢ pelne okrazenie. Stad pie¢ kafelkow nie tworzy cyklu, a to prowadzi
do wniosku, ze krawedzi w grafie jest co najwyzej k < n — 1 = 4. Obwdd wynosi
zatem co najmniej 3n — 2k > 15 — 8 = 7 (od liczby wszystkich bokéw tréjkatéw
odejmujemy krawedzie styku).

Na siatce kwadratowej mieliSmy bardzo uzyteczne pojecie wypuklosci, ktére
jednak nie przeklada sie bezposrednio na siatke trojkatna. Latwiej uogdlnié
»brostokat ograniczajacy” — przeciecie najwezszego poziomego i pionowego

pasa obejmujacego poliomino. Na siatce tréjkatnej musimy przeciaé trzy
najwezsze pasy, réownolegte do odpowiednich linii siatki i zawierajace dany
poliapez. W pierwszym odruchu mozna by nazwac¢ taka otoczke ,szeSciokatem
ograniczajacym” poliapez, ale liczba bokéw powstalej figury moze by¢ mniejsza
od 6! Bedziemy zatem uzywali okreslenia uwypuklenie poliapezu.

Zaznaczmy w tym miejscu, ze dla uproszczenia zapisu w dalszych rozwazaniach
dtugosci w kierunkach siatki mierzone beda dtugos$ciami bokéw jej ,,oczek”
(tzn. najmniejszych tworzonych przez nig tréjkatéw réwnobocznych), zad
dlugosci w kierunkach prostopadlych do linii siatki (szeroko$ci paséw) mierzymy
wysokosciami ,,oczek”. Oczywiscie jednostka pola powierzchni bedzie pole
pojedynczego ,,oczka” siatki.

Pokazemy teraz, ze, podobnie jak dla kwadratowych kafelkéw, obwdd poliapezu
jest ograniczony z dotu przez obwdd jego uwypuklenia (na siatce kwadratowej
bylo to prawda dla prostokgta ograniczajgcego). Bez straty ogdlnosci zalézmy,
ze badana figura jest spojna, tzn. ze zaden rzad nie jest pusty. Jest bowiem
jasne, ze minimalizujac obwod, niczego nie tracimy, gdy stykamy ze soba
spojne skladowe figury. Tym razem mamy jednak trzy kierunki wierszy/kolumn
(rzedéw). Rozwazmy wiec promienie wychodzace z kazdej jednostkowej krawedzi
uwypuklenia do jego wnetrza, w obu dostepnych kierunkach (trzeci jest
réwnolegly do krawedzi). W dana krawedz wyjsciowego poliapezu moga trafié¢ co
najwyzej dwa promienie (zakladamy, ze jest on nieprzezroczysty dla promieni),
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Czytelnik Obeznany z Geometrycznym
Pojeciem Wypuktosci moze wykazaé, ze
poliapez jest wypuklym podzbiorem
plaszczyzny wtedy i tylko wtedy, gdy jest
réwny swojemu uvwypukleniu. Warto
zaznaczy¢, ze uwypuklenie nie jest

w ogdblnosci tozsame z klasyczna otoczka
wypuklaq.

Kto uwaza, ze to zwigkszanie obwodu o 1
nie jest oczywiste, ma nie tylko racje, ale
i ¢wiczenie do rozwigzanial

Wypuktly poliapez z odcigtym

i doklejonym rze¢dem. Podane ditugosdci
rzedéw odnosza si¢ do dluzszej podstawy
trapezu. Ich pole to dwukrotnosé dlugosci
minus jeden.

a liczba promieni to dwukrotnos¢ obwodu uwypuklenia. Stad liczba wszystkich
krawedzi nie moze by¢ mniejsza od wspomnianego obwodu. Zauwazmy, ze

dla krawedzi poliapezu lezacych na obwodzie jego uwypuklenia oba promienie
zaczynaja sie i koncza w tym samym punkcie.

Kolejny istotny fakt to stwierdzenie, ze figura maksymalizujaca pole przy
danym obwodzie musi byé wypukla (réwna swojemu uwypukleniu), poniewaz

w przeciwnym wypadku moglibySmy ja uwypuklié, nie zwigkszajac obwodu.
Formalnie kto$§ méglby zapytaé: czy jedli obwdd sie zmniejszy, to czy czegos

nie zepsujemy. Minimalny obwdéd nie jest przeciez rosnaca funkcja liczby podl,
wiec moze maksymalne pole nie musi rosnaé wraz z obwodem? Otéz okazuje
sie, ze w te druga strone zalezno$¢ musi byé rosnaca, poniewaz zawsze mozenwy
dostawi¢ jeden kafelek w taki sposéb, aby zaréwno pole, jak i obwdd wzrosly o 1.
Potencjalny spadek dlugosci obwodu po uwypukleniu mozna zatem ,,odrobi¢”
przy dalszym powiekszaniu figury.

Teraz zastanéwmy sie, jak duze pole moze mieé¢ poliapez o danym obwodzie.
Niech P4(l) bedzie maksymalnym polem poliapezu o danym obwodzie [ > 3. Takie
maksymalne pole bedzie dla nas dobrym punktem odniesienia w kontekscie
wyjséciowego problemu, gdyz jesli przez O4(n) oznaczymy minimalny obwdd
poliapezu o polu n > 1, to zachodzi O4(P4(l)) = I, co teraz pokazemy. Ustalmy
{ > 3 iniech S bedzie wypuklym poliapezem o obwodzie [ i polu P4({). Gdyby
istnial poliapez o obwodzie I’ < 1 i polu P4(l), to jego uwypuklenie S’ miatoby
obwdd mniejszy niz I i pole co najmniej P4(l). Do wypuktego poliapezu zawsze
mozna dodaé nowy rzad, zwickszajac jego obwdd o 1. Pozwala to powiekszyé S’
do obwodu I, zwigkszajac przy tym jego pole ponad wartos$é Py(l) — uzyskujemy
wiec sprzecznosé. Oznacza to, ze faktycznie musi zachodzi¢ O4(P4(1)) = 1.

Wazna wlasnoscia takich maksymalnych poliapezéw jest fakt, ze ich szerokosci
(chodzi o szerokosci trzech paséw, ktérych przecieciem jest dany poliapez) nie
mogg sie rézni¢ o wiecej niz jeden. Gdyby bowiem wypukly poliapez miat
szerokosci a > ¢ > b oraz a > b+ 2, to wowczas mozna by stworzy¢ poliapez

o szerokosciach (a — 1,¢,b+ 1), ktéry bedzie mial wigksze pole, przy identycznym
obwodzie: do tej konstrukcji wystarczy odciaé¢ jeden rzad przy brzegu pasa

o szerokoéci a oraz dotozy¢ rzad przy krawedzi pasa o szerokosci b. Dalej,
poniewaz a — 1 > b, to mozna tak dobra¢ krawedzie paséw, aby sie nie spotykaty
nawet po odcigciu (nachodzenie na siebie paséw odcinanych i doklejanych
skomplikowaloby poréwnywanie figur). Latwo obliczyé¢, ze dlugosé odcietego
pasa jest mniejsza od dlugosci fragmentu doklejanego, czyli procedura faktycznie
doprowadzi do zwiekszenia pola figury.

Skoro wiemy, ze maksymalne poliapezy maja szeroko$ci réznigce sie co najwyzej
o 1, to kolejng istotna obserwacja bedzie to, ze osie paséw powinny przecinacé
sie mozliwie blisko siebie. Poniewaz trzy liczby réznia sie co najwyzej o 1,
przynajmniej dwie sa réwne, czyli mozemy mysle¢ o naszym poliapezie jako

o wycinku rombu (czesci wspdlnej dwéch paséw o szerokosci m). Odcielidémy od
niego tréjkaty o nieujemnych wysokosciach hi oraz hs. Ponadto suma hi + ho
jest stata. Figura sklada sie wowczas z 2m? — (h? + h3) pdl. Latwo sprawdzié, ze
w takiej sytuacji suma kwadratéw jest tym mniejsza, im mniejsza jest réznica
|h1 — hal, ktéra jest dwukrotnoscia odleglodci osi trzeciego pasa od érodka rombu.
Jest to oczywiste, biorac pod uwage fakt, ze w rombie im blizej przekatnej, tym
dtuzsze rzedy. Pozwolimy sobie opusci¢ dowdd algebraiczny tych obserwacji.

Ustalone dotad wtasnosci maksymalnych poliapezéw przy danym obwodzie
pozwalaja juz dla kazdego I € N wyznaczy¢ je jednoznacznie z dokladnoscia
do izometrii. Okazuje sie, ze przedstawienie liczby naturalnej jako sumy
trzech liczb rézniacych sie o co najwyzej jeden jest jednoznaczne (kolejnosé
nas nie interesuje), a ksztalt maksymalnego poliapezu o takich szerokosciach
réwniez jest jednoznaczny. W zaleznosci od reszty z dzielenia obwodu [

przez 6 otrzymujemy wiec dokladne wartosci Pq(l). Poniewaz nie rozwazamy
wypuklych poliapezéw o szerokosci 0, wygodnie bedzie oznacza¢ obwody jako
=06k —5,6k—4,...,6k — 1,6k (ujemne reszty) dla k > 1.
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Na rysunkach pole kazdego duzego tréjkata to k2, zas zakolorowane tréjkaty
oznaczajg obszary nakryte dwoma réwnoleglobokami o polu 2k.

| =6k l=6k—1 l=6k—2 l=6k—3 l=6k—4 l=6k—-5
iiiii @ _
fffff aR\VAN 2 VAN
ok, 2k, 2k 2k, 2k, 2k—1 2%, 2k—1,2k—1  2k—1,2k—1,2k—1 2k—1,2k—1,2k—2 2k—1,2k—2,2k—2

Korzystamy z monotonicznosci

funkcji @ — [\/@—I

Wykazang wlasnie rownosé mozna opisaé¢ zwartym

n+v6m

wzorem:

Oq(n):2’7 >

Pokazemy bowiem, ze dla liczby catkowitej k
i rzeczywistej x wartosé w(k,z) = 2 [k;—ﬂ
najmniejsza liczba catkowita nie mniejsza od = o tej
samej parzystosci co k. Wprost z definicji, parzystosé
w(k, z) jest réwna parzystosci k, poniewaz sufit jest
zawsze liczba catkowita. Z kolei wiedzac, ze [y] > v,

otrzymujemy

w(k, x)

>k+z—k=ux.

Zauwazmy, ze po pomnozeniu pola przez 6 mozemy je latwo poréwnadé
z kwadratem liczby I:

6P, (6k) = 62k> = (6k)? > (6k —1)2
6P,(6k — 1) 62k% — 12k —6 = (6k —1)2 — 7 = (6k — 2)% + 12k — 10
6P,(6k —2) = 6%k*—2-12k = (6k—2)>—4=(6k—3)>+12k—9
6P, (6k —3) = 6%k* —3-12k +6 = (6k —3)? — 3 = (6k —4)? + 12k — 10
6P,(6k —4) = 62k? —4- 12k + 12 = (6k —4)? —4 = (6k — 5)? + 12k — 13
6P, (6k —5) = 62k? — 512k + 18 = (6k — 5)2 — 7 = (6k — 6)% + 12k — 18

Zatem w kazdym przypadku (I — 1)? < 6P4(l) < [? (pamietajmy, ze [ > 3; nie
istnieje poliapez o obwodzie 2). Po spierwiastkowaniu otrzymujemy nieréwnosci

rownowazne stwierdzeniu: [ = { 6Pq(l)—‘. Jesli dobierzemy takie [, Ze zachodza

nieréwnosci Py(l — 1) < n < Py(l), otrzymamy [ — 1 < (\/EW < I. Gdyby
O4(n) < 1, wéwezas n < Pq(Oq(n)) < Pq(l — 1), gdzie pierwsza nieréwnosé¢ wynika
wprost z definicji P, i O4, a druga z monotonicznoéci Py. Przeczy to zalozeniu
P,(l = 1) < n. Zatem zawsze zachodzi Oq(n) =1 > (\/@ Zauwazmy poza tym,
ze obwdd musi byé tej samej parzystodci co n, poniewaz wynosi 3n — 2s, gdzie
s to liczba wspélnych bokéw pél tworzacych figure. Stad wniosek, ze

O4(n) > min{€ eEN:l>V6ni 2|(n — é)}
Okazuje sie, ze tak naprawde zachodzi tu réwno$é. Najpierw rozwazmy
przypadek | = (\/W . Gdy przyjrzymy sie poprzednim rysunkom, zauwazymy,
ze kolejne maksymalne poliapezy réznia sie jednym rzedem pdl. Zabierajac
kolejne komorki ze skrajnego rzedu maksymalnego poliapezu o obwodzie [, albo
zwiekszamy obwdd o 1 (jesli zabrane komérki tworza trapez, ew. zdegenerowany
do jednego tréjkata), albo go nie zmieniamy (gdy zabrane komérki tworza
réwnoleglobok). Zatem faktycznie, minimalny obwdd bedzie alternowal
jednoczesnie z parzystoscia n (staly byé nie moze) pomiedzy wartosciami [ a [ + 1.
Niestety moze si¢ zdarzy¢, ze | = [\/6711 + 1. Zauwazmy, ze Po(l — 1) +1 < n,
zatem w takim przypadku 6P4(I — 1) +6 < 6n < (I — 1)2. Z trzeciej kolumny
wzorow odczytujemy, ze moze sie tak zdarzy¢ tylko, gdy [ przystaje modulo 6 do
1 lub 5, a ponadto musi by¢ n = Py(l — 1) + 1 = Py([v/6n]) + 1. Uzyskanie pola n
(oraz wlasciwej parzystosci obwodu!) z maksymalnego poliapezu o obwodzie
l—-1= {\/67’ jest zatem mozliwe poprzez dodanie jednego tréjkata.

Druga nieréwnosé, [y] <y + 1, dowodzi, ze

k 2
w(k,x) < 2% —k=xz+2.
—n.
-‘ W otrzymanym przedziale lezy doktadnie jedna

liczba catkowita o tej samej parzystosci co k. Zatem
dowiedli$my, ze w(n,/6n) jest réwne najmniejszej
liczbie catkowitej, wiekszej od v/6n, ktora jest tej samej
parzystosci co n.

—k to

Po szczegbéltowym omodwieniu siatki kwadratowej

i trojkatnej pozostaje wyznaczyé¢ wzor na minimalny
obwdd dla ukladow kafelkéw szedciokatnych. To zadanie
zostawimy juz jednak jako ¢wiczenie Czytelnikowi.
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