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W artykule O obwodach poliomin (zob. ∆8
22) wyprowadziliśmy jawny wzór na

minimalny obwód kształtu ułożonego z n kwadratowych kafelków (kwadratówZapis ⌈x⌉ oznacza najmniejszą liczbę
całkowitą nie mniejszą od x, czyli
⌈x⌉ − 1 < x ⩽ ⌈x⌉. Wartość ⌈x⌉ nazywa
się czasem sufitem liczby x.

jednostkowych), wynoszący 2 ⌈2
√

n⌉. Zapowiedzieliśmy wówczas, że po
tym łagodnym wprowadzeniu w metody szacowania obwodów zmierzymy
się z bardziej skomplikowanym przypadkiem kafelków trójkątnych. Słowa
dotrzymujemy i zapraszamy do lektury.
Na początku wypadałoby jeszcze wyjaśnić pochodzenie obecnego w tytule
terminu „poliapez”. Figury złożone z trójkątów równobocznych zwykło nazywać
się „poliamondami”, ponieważ po angielsku dwa trójkąty tworzą „di-amond”
(karo, ♢). Skoro jednak „diament” nie jest w Polsce zwyczajową nazwą rombu,
możemy nazywać konfiguracje trójkątów „poliapezami”, ponieważ trzy tworzą
„tr(i)-apez”.

Kształty ułożone z 1–5 trójkątów równobocznych, czyli monapez, diapez, triapez, 3 tetrapezy
i 4 pentapezy

Początkowe wartości ciągu minimalnych obwodów odpowiadających kolejnym
liczbom trójkątnych kafelków wynoszą: 3, 4, 5, 6, 7 i znowu 6 – z sześciu trójkątów
możemy ułożyć sześciokąt foremny. Oczywiście dla tak małej liczby pól
można ręcznie sprawdzać wszystkie układy, ale i tak warto się zastanowić,
dlaczego „nagle” obwód się zmniejsza. Albo inaczej: czy minimalny obwód 7
dla pięciu pól można wyznaczyć prościej? Można: z układem kafelków skojarzmy
graf odpowiadający temu, które pola posiadają wspólny bok. Zauważmy, że
najkrótszy cykl, jaki może w takim grafie wystąpić, ma długość 6, ponieważ
zawsze skręcamy o 60◦ i potrzebujemy co najmniej 6 takich zakrętów, aby
wykonać pełne okrążenie. Stąd pięć kafelków nie tworzy cyklu, a to prowadzi
do wniosku, że krawędzi w grafie jest co najwyżej k ⩽ n − 1 = 4. Obwód wynosi
zatem co najmniej 3n − 2k ⩾ 15 − 8 = 7 (od liczby wszystkich boków trójkątów
odejmujemy krawędzie styku).
Na siatce kwadratowej mieliśmy bardzo użyteczne pojęcie wypukłości, które
jednak nie przekłada się bezpośrednio na siatkę trójkątną. Łatwiej uogólnić
„prostokąt ograniczający” – przecięcie najwęższego poziomego i pionowego
pasa obejmującego poliomino. Na siatce trójkątnej musimy przeciąć trzy
najwęższe pasy, równoległe do odpowiednich linii siatki i zawierające dany
poliapez. W pierwszym odruchu można by nazwać taką otoczkę „sześciokątem
ograniczającym” poliapez, ale liczba boków powstałej figury może być mniejsza
od 6! Będziemy zatem używali określenia uwypuklenie poliapezu.
Zaznaczmy w tym miejscu, że dla uproszczenia zapisu w dalszych rozważaniach
długości w kierunkach siatki mierzone będą długościami boków jej „oczek”
(tzn. najmniejszych tworzonych przez nią trójkątów równobocznych), zaś

Przykładowy poliapez (oktapez) oraz jego
uwypuklenie. Przerywane linie oznaczają
brzegi minimalnych pasów. Zgodnie
z przedstawioną w tekście konwencją ten
poliapez ma obwód 10, pole 8,
a ograniczają go pasy o szerokościach 2, 4
i 3.

długości w kierunkach prostopadłych do linii siatki (szerokości pasów) mierzymy
wysokościami „oczek”. Oczywiście jednostką pola powierzchni będzie pole
pojedynczego „oczka” siatki.
Pokażemy teraz, że, podobnie jak dla kwadratowych kafelków, obwód poliapezu
jest ograniczony z dołu przez obwód jego uwypuklenia (na siatce kwadratowej
było to prawdą dla prostokąta ograniczającego). Bez straty ogólności załóżmy,
że badana figura jest spójna, tzn. że żaden rząd nie jest pusty. Jest bowiemRząd w poliapezie to jego część wspólna

z pasem o szerokości 1, w dowolnym
z trzech kierunków. jasne, że minimalizując obwód, niczego nie tracimy, gdy stykamy ze sobą

spójne składowe figury. Tym razem mamy jednak trzy kierunki wierszy/kolumn
(rzędów). Rozważmy więc promienie wychodzące z każdej jednostkowej krawędzi
uwypuklenia do jego wnętrza, w obu dostępnych kierunkach (trzeci jest
równoległy do krawędzi). W daną krawędź wyjściowego poliapezu mogą trafić co
najwyżej dwa promienie (zakładamy, że jest on nieprzezroczysty dla promieni),
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a liczba promieni to dwukrotność obwodu uwypuklenia. Stąd liczba wszystkich
krawędzi nie może być mniejsza od wspomnianego obwodu. Zauważmy, że
dla krawędzi poliapezu leżących na obwodzie jego uwypuklenia oba promienie
zaczynają się i kończą w tym samym punkcie.

Kolejny istotny fakt to stwierdzenie, że figura maksymalizująca pole przyCzytelnik Obeznany z Geometrycznym
Pojęciem Wypukłości może wykazać, że
poliapez jest wypukłym podzbiorem
płaszczyzny wtedy i tylko wtedy, gdy jest
równy swojemu uwypukleniu. Warto
zaznaczyć, że uwypuklenie nie jest
w ogólności tożsame z klasyczną otoczką
wypukłą.

danym obwodzie musi być wypukła (równa swojemu uwypukleniu), ponieważ
w przeciwnym wypadku moglibyśmy ją uwypuklić, nie zwiększając obwodu.
Formalnie ktoś mógłby zapytać: czy jeśli obwód się zmniejszy, to czy czegoś
nie zepsujemy. Minimalny obwód nie jest przecież rosnącą funkcją liczby pól,
więc może maksymalne pole nie musi rosnąć wraz z obwodem? Otóż okazuje
się, że w tę drugą stronę zależność musi być rosnąca, ponieważ zawsze możemy
dostawić jeden kafelek w taki sposób, aby zarówno pole, jak i obwód wzrosły o 1.Kto uważa, że to zwiększanie obwodu o 1

nie jest oczywiste, ma nie tylko rację, ale
i ćwiczenie do rozwiązania! Potencjalny spadek długości obwodu po uwypukleniu można zatem „odrobić”

przy dalszym powiększaniu figury.

Teraz zastanówmy się, jak duże pole może mieć poliapez o danym obwodzie.
Niech P◁(l) będzie maksymalnym polem poliapezu o danym obwodzie l ⩾ 3. Takie
maksymalne pole będzie dla nas dobrym punktem odniesienia w kontekście
wyjściowego problemu, gdyż jeśli przez O◁(n) oznaczymy minimalny obwód
poliapezu o polu n ⩾ 1, to zachodzi O◁(P◁(l)) = l, co teraz pokażemy. Ustalmy
l ⩾ 3 i niech S będzie wypukłym poliapezem o obwodzie l i polu P◁(l). Gdyby
istniał poliapez o obwodzie l′ < l i polu P◁(l), to jego uwypuklenie S′ miałoby
obwód mniejszy niż l i pole co najmniej P◁(l). Do wypukłego poliapezu zawsze
można dodać nowy rząd, zwiększając jego obwód o 1. Pozwala to powiększyć S′

do obwodu l, zwiększając przy tym jego pole ponad wartość P◁(l) – uzyskujemy
więc sprzeczność. Oznacza to, że faktycznie musi zachodzić O◁(P◁(l)) = l.

Ważną własnością takich maksymalnych poliapezów jest fakt, że ich szerokości
(chodzi o szerokości trzech pasów, których przecięciem jest dany poliapez) nie
mogą się różnić o więcej niż jeden. Gdyby bowiem wypukły poliapez miał
szerokości a ⩾ c ⩾ b oraz a ⩾ b + 2, to wówczas można by stworzyć poliapez
o szerokościach (a − 1, c, b + 1), który będzie miał większe pole, przy identycznym
obwodzie: do tej konstrukcji wystarczy odciąć jeden rząd przy brzegu pasa
o szerokości a oraz dołożyć rząd przy krawędzi pasa o szerokości b. Dalej,
ponieważ a − 1 > b, to można tak dobrać krawędzie pasów, aby się nie spotykały
nawet po odcięciu (nachodzenie na siebie pasów odcinanych i doklejanych

a

b

h
b− h+ 1

a−
h

Wypukły poliapez z odciętym
i doklejonym rzędem. Podane długości
rzędów odnoszą się do dłuższej podstawy
trapezu. Ich pole to dwukrotność długości
minus jeden.

skomplikowałoby porównywanie figur). Łatwo obliczyć, że długość odciętego
pasa jest mniejsza od długości fragmentu doklejanego, czyli procedura faktycznie
doprowadzi do zwiększenia pola figury.

Skoro wiemy, że maksymalne poliapezy mają szerokości różniące się co najwyżej
o 1, to kolejną istotną obserwacją będzie to, że osie pasów powinny przecinać
się możliwie blisko siebie. Ponieważ trzy liczby różnią się co najwyżej o 1,
przynajmniej dwie są równe, czyli możemy myśleć o naszym poliapezie jako
o wycinku rombu (części wspólnej dwóch pasów o szerokości m). Odcięliśmy od
niego trójkąty o nieujemnych wysokościach h1 oraz h2. Ponadto suma h1 + h2
jest stała. Figura składa się wówczas z 2m2 − (h2

1 + h2
2) pól. Łatwo sprawdzić, że

w takiej sytuacji suma kwadratów jest tym mniejsza, im mniejsza jest różnica
|h1 − h2|, która jest dwukrotnością odległości osi trzeciego pasa od środka rombu.
Jest to oczywiste, biorąc pod uwagę fakt, że w rombie im bliżej przekątnej, tym

h1

h2

m
m dłuższe rzędy. Pozwolimy sobie opuścić dowód algebraiczny tych obserwacji.

Ustalone dotąd własności maksymalnych poliapezów przy danym obwodzie
pozwalają już dla każdego l ∈ N wyznaczyć je jednoznacznie z dokładnością
do izometrii. Okazuje się, że przedstawienie liczby naturalnej jako sumy
trzech liczb różniących się o co najwyżej jeden jest jednoznaczne (kolejność
nas nie interesuje), a kształt maksymalnego poliapezu o takich szerokościach
również jest jednoznaczny. W zależności od reszty z dzielenia obwodu l
przez 6 otrzymujemy więc dokładne wartości P◁(l). Ponieważ nie rozważamy
wypukłych poliapezów o szerokości 0, wygodnie będzie oznaczać obwody jako
l = 6k − 5, 6k − 4, . . . , 6k − 1, 6k (ujemne reszty) dla k ⩾ 1.
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Na rysunkach pole każdego dużego trójkąta to k2, zaś zakolorowane trójkąty
oznaczają obszary nakryte dwoma równoległobokami o polu 2k.

l = 6k l = 6k − 1 l = 6k − 2 l = 6k − 3 l = 6k − 4 l = 6k − 5

2k, 2k, 2k 2k, 2k, 2k−1 2k, 2k−1, 2k−1 2k−1, 2k−1, 2k−1 2k−1, 2k−1, 2k−2 2k−1, 2k−2, 2k−2

Zauważmy, że po pomnożeniu pola przez 6 możemy je łatwo porównać
z kwadratem liczby l:

6P◁(6k) = 62k2 = (6k)2 > (6k − 1)2

6P◁(6k − 1) = 62k2 − 12k − 6 = (6k − 1)2 − 7 = (6k − 2)2 + 12k − 10
6P◁(6k − 2) = 62k2 − 2 · 12k = (6k − 2)2 − 4 = (6k − 3)2 + 12k − 9
6P◁(6k − 3) = 62k2 − 3 · 12k + 6 = (6k − 3)2 − 3 = (6k − 4)2 + 12k − 10
6P◁(6k − 4) = 62k2 − 4 · 12k + 12 = (6k − 4)2 − 4 = (6k − 5)2 + 12k − 13
6P◁(6k − 5) = 62k2 − 5 · 12k + 18 = (6k − 5)2 − 7 = (6k − 6)2 + 12k − 18

Zatem w każdym przypadku (l − 1)2 < 6P◁(l) ⩽ l2 (pamiętajmy, że l ⩾ 3; nie
istnieje poliapez o obwodzie 2). Po spierwiastkowaniu otrzymujemy nierówności
równoważne stwierdzeniu: l =

⌈√
6P◁(l)

⌉
. Jeśli dobierzemy takie l, że zachodzą

nierówności P◁(l − 1) < n ⩽ P◁(l), otrzymamy l − 1 ⩽
⌈√

6n
⌉
⩽ l. GdybyKorzystamy z monotoniczności

funkcji x 7→
⌈√

6x
⌉

O◁(n) < l, wówczas n ⩽ P◁(O◁(n)) ⩽ P◁(l − 1), gdzie pierwsza nierówność wynika
wprost z definicji P◁ i O◁, a druga z monotoniczności P◁. Przeczy to założeniu
P◁(l − 1) < n. Zatem zawsze zachodzi O◁(n) ⩾ l ⩾

⌈√
6n
⌉
. Zauważmy poza tym,

że obwód musi być tej samej parzystości co n, ponieważ wynosi 3n − 2s, gdzie
s to liczba wspólnych boków pól tworzących figurę. Stąd wniosek, że

O◁(n) ⩾ min
{

ℓ ∈ N : ℓ ⩾
√

6n i 2|(n − ℓ)
}

.

Okazuje się, że tak naprawdę zachodzi tu równość. Najpierw rozważmy
przypadek l =

⌈√
6n
⌉
. Gdy przyjrzymy się poprzednim rysunkom, zauważymy,

że kolejne maksymalne poliapezy różnią się jednym rzędem pól. Zabierając
kolejne komórki ze skrajnego rzędu maksymalnego poliapezu o obwodzie l, albo
zwiększamy obwód o 1 (jeśli zabrane komórki tworzą trapez, ew. zdegenerowany
do jednego trójkąta), albo go nie zmieniamy (gdy zabrane komórki tworzą
równoległobok). Zatem faktycznie, minimalny obwód będzie alternował
jednocześnie z parzystością n (stały być nie może) pomiędzy wartościami l a l + 1.
Niestety może się zdarzyć, że l =

⌈√
6n
⌉

+ 1. Zauważmy, że P◁(l − 1) + 1 ⩽ n,
zatem w takim przypadku 6P◁(l − 1) + 6 ⩽ 6n ⩽ (l − 1)2. Z trzeciej kolumny
wzorów odczytujemy, że może się tak zdarzyć tylko, gdy l przystaje modulo 6 do
1 lub 5, a ponadto musi być n = P◁(l − 1) + 1 = P◁(

⌈√
6n
⌉
) + 1. Uzyskanie pola n

(oraz właściwej parzystości obwodu!) z maksymalnego poliapezu o obwodzie
l − 1 =

⌈√
6n
⌉

jest zatem możliwe poprzez dodanie jednego trójkąta.

Wykazaną właśnie równość można opisać zwartym
wzorem:

O◁(n) = 2
⌈

n +
√

6n

2

⌉
− n.

Pokażemy bowiem, że dla liczby całkowitej k
i rzeczywistej x wartość w(k, x) = 2

⌈
k+x

2
⌉

− k to
najmniejsza liczba całkowita nie mniejsza od x o tej
samej parzystości co k. Wprost z definicji, parzystość
w(k, x) jest równa parzystości k, ponieważ sufit jest
zawsze liczbą całkowitą. Z kolei wiedząc, że ⌈y⌉ ⩾ y,
otrzymujemy

w(k, x) ⩾ k + x − k = x.

Druga nierówność, ⌈y⌉ < y + 1, dowodzi, że

w(k, x) < 2k + x + 2
2 − k = x + 2.

W otrzymanym przedziale leży dokładnie jedna
liczba całkowita o tej samej parzystości co k. Zatem
dowiedliśmy, że w(n,

√
6n) jest równe najmniejszej

liczbie całkowitej, większej od
√

6n, która jest tej samej
parzystości co n.

Po szczegółowym omówieniu siatki kwadratowej
i trójkątnej pozostaje wyznaczyć wzór na minimalny
obwód dla układów kafelków sześciokątnych. To zadanie
zostawimy już jednak jako ćwiczenie Czytelnikowi.
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