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Rys. 1. Okrąg C(4) i okręgi C(4 ±
√

2
2 )

pomagające oszacować liczbę punktów
kratowych

r =
√
n N(n) N(n)/n
1 5 5
2 13 3,25
3 29 3,22
4 49 3,06
5 81 3,24
6 113 3,14
7 149 3,04
8 197 3,08
9 253 3,12

10 317 3,17
20 1257 3,14
30 2821 3,13

100 31417 3,1417
200 125629 3,1407
300 282697 3,1411

Rys. 2

r =
√
n N(n) N(n)/n ≈ π

400 502 625 3,14141
500 785 349 3,14139

1 000 3 141 549 3,141549
10 000 314 159 221 3,141592

100 000 31 415 939 281 3,141594
200 000 125 663 759 077 3,141594
Rys. 4

trzy geometryczne sposoby obliczania pól figur płaskich. Celem tego artykułu jest
pokazanie, jak można aproksymować pole koła o promieniu r =

√
n, gdzie n jest

liczbą naturalną, za pomocą zliczania punktów kratowych zawartych w tym kole
i na jego brzegu. Pokażemy także, że w przypadku wielokątów o wierzchołkach
w punktach kratowych znajomość liczby punktów kratowych w ich wnętrzach
i na ich brzegach wystarcza do dokładnego obliczenia pól tych wielokątów.

Obliczenia dla okręgu. Oznaczmy przez N(n) liczbę punktów kratowych
na i wewnątrz okręgu C(

√
n) o środku w początku układu współrzędnych

i promieniu r =
√

n (patrz rys. 1).

Jednym z pierwszych uczonych, którzy postawili pytanie o wartość N(n), był
Carl Friedrich Gauss. W roku 1837 napisał na ten temat artykuł. Podał w nim
swoje obliczenia dla naturalnych r w zakresie od 1 do 300, patrz tabela na
rysunku 2. Z tabeli możemy wywnioskować, że wartości N(n)

n dążą do liczby π,
gdy n rośnie nieograniczenie. Aby to pokazać, oszacujemy najpierw różnicę
|N(n) − πn|. Skoro N(n) jest równe sumie pól kwadratów, których środki leżą na
i wewnątrz okręgu C(

√
n), to jest jasne (patrz rys. 1), że

π

(√
n −

√
2

2

)2

⩽ N(n) ⩽ π

(√
n +

√
2

2

)2

,

skąd wynika, że

(1)
∣∣∣∣N(n)

n
− π

∣∣∣∣ ⩽ π

(√
2
n

+ 1
2n

)
.

Prawa strona ostatniej nierówności dąży do zera wraz z nieograniczonym
wzrostem n. Powyższą nierówność możemy odczytać jako∣∣∣∣N(n) − πn

πn

∣∣∣∣ ⩽
√

2
n

+ 1
2n

,

co oznacza, że wartość względna (w stosunku do pola koła o promieniu
√

n)
różnicy pomiędzy liczbą punktów kratowych w tym kole, razem z jego brzegiem,
a polem tego koła dąży do zera wraz ze wzrostem promienia tego koła. Wartość
względna tej różnicy jest rzędu 1√

n
, czyli odwrotności promienia koła.

Na podstawie tabeli z rysunku 2 można obliczyć tę różnicę z dużą dokładnością,
biorąc np. za liczbę π jej przybliżenie Archimedesowe 22

7 .
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Rys. 3. Ilustracja zbieżności N(n2)/n2 → π

Wykres na rysunku 3 pokazuje, w jaki sposób N(r2)
r2 zbliża się do liczby π wraz

ze wzrostem r w zakresie 0 < r ⩽ 300. Tabela na rysunku 4 pokazuje wyliczenia
dla większych wartości r.

Nasuwają się dwa pytania.
(i) Czy istnieją wzory określające N(n) w zależności od n?
(ii) Czy może istnieją figury płaskie, dla których liczba punktów kratowych

leżących w ich wnętrzu i na ich brzegu wyraża nie tylko w przybliżeniu, ale –
poprzez konkretną formułę – dokładnie pola tych figur?
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Na oba te pytania odpowiedź jest pozytywna. Odpowiedzią na pytanie (i) jest
formuła Gaussa:

N(n) = 1 + 4
(

⌊n⌋ −
⌊n

3

⌋
+
⌊n

5

⌋
−
⌊n

7

⌋
+
⌊n

9

⌋
−
⌊ n

11

⌋
+ . . .

)
,(2)

gdzie ⌊·⌋ jest funkcją podłogi. Łatwo stąd wyznaczyć bezpośrednio wartości dla

Podłoga ⌊x⌋ liczby x to największa liczba
całkowita nie większa od x.
Przykładowe wartości N(n):

N(0) = 1
N(1) = 1 + 4 = 5
N(2) = 1 + 4 · 2 = 9
N(3) = 1 + 4 · 3 − 4 = 9
N(4) = 1 + 4 · 4 − 4 = 13

n = 0, 1, 2, 3, 4 (na marginesie). Z równości N(2) = N(3) możemy wywnioskować,
że na okręgu C(

√
3) nie ma żadnych punktów kratowych, a z tego, że

N(4) − N(3) = 4, wynika, że na okręgu C(
√

4) jest ich 4.

Zanim przejdziemy do dowodu wzoru Gaussa, wykażemy jedną z jego
konsekwencji, słynny wzór Leibniza:

(3) π

4 = 1 − 1
3 + 1

5 − 1
7 + 1

9 − 1
11 + . . .

Załóżmy, że
√

n jest liczbą naturalną nieparzystą.
Napiszmy wzór Gaussa (2) w postaci:
1
4(N(n)−1) = ⌊n⌋−

⌊n

3

⌋
+
⌊n

5

⌋
−
⌊n

7

⌋
+. . .±

⌊
n√
n

⌋
±θ

√
n,

gdzie θ jest ułamkiem właściwym. Korzystamy tu
z tego, że szereg jest naprzemienny, a moduły jego
wyrazów tworzą ciąg nierosnący. Wtedy moduł
reszty szeregu jest nie większy od modułu pierwszego
odrzuconego wyrazu, czyli ⌊ n√

n+2 ⌋. Liczba ta jest
mniejsza od liczby naturalnej ⌊ n√

n
⌋ =

√
n, można ją

zatem zapisać jako θ
√

n, gdzie θ jest jak wyżej.
Następny krok to zastąpienie funkcji podłogi ułamka
samym ułamkiem. Ponieważ k

n − ⌊ kn⌋ ⩽ 1, a liczba
zachowanych wyrazów szeregu jest równa

√
n+1
2 <

√
n,

więc
1
4(N(n) − 1) = n − n

3 + n

5 − n

7 + . . . ± n√
n

± θ
√

n ± θ′√n,

gdzie θ′ jest także ułamkiem właściwym. Dzieląc teraz
obie strony przez n, otrzymujemy
1

4n
(N(n) − 1) = 1 − 1

3 + 1
5 − 1

7 + . . . ± 1√
n

± θ√
n

± θ′
√

n

dla liczb n przebiegających ciąg kwadratów liczb
nieparzystych.

Biorąc pod uwagę zbieżność N(n)
n → π wynikającą

z oszacowania (1) i zbiegając z n do nieskończoności,
dostajemy wzór Leibniza (3).

Przejdźmy teraz do dowodu formuły Gaussa. Jeśli przez
R(n) oznaczymy liczbę punktów kratowych na okręgu
C(

√
n), to N(n) = R(0) + R(1) + . . . + R(n). Znając

wartości R(k) dla poszczególnych k, możemy obliczyć
N(n), i taka też była droga odkrycia powyższej formuły
Gaussa. Rzecz sprowadza się zatem do pytania o liczbę
pierwiastków całkowitych a, b równania

a2 + b2 = n(4)

dla danej liczby naturalnej n. Mamy następujące:

Twierdzenie 1 (za [Hilbert, 1956]). Liczba
przedstawień liczby całkowitej n jako sumy kwadratów
dwóch liczb całkowitych jest równa czterokrotności
różnicy liczby dzielników liczby n o postaci 4k + 1 i liczby
dzielników o postaci 4k + 3.

Dla przykładu R(3) = N(3) − N(2) = 0. Liczba pierwsza 3 ma jedynie
dzielniki 1 i 3, więc na mocy powyższego twierdzenia R(3) = 4(1 − 1) = 0.
Dalej: R(4) = N(4) − N(3) = 4. Wśród dzielników liczby 4 (czyli 1, 2, 4)
nie ma dzielników postaci 4k + 3, więc z twierdzenia otrzymujemy
R(4) = 4(1 − 0) = 4. I rzeczywiście, na okręgu C(

√
4) mamy cztery punkty

kratowe, (2, 0), (0, 2), (−2, 0), (0, −2), będące całkowitymi rozwiązaniami równania
a2 + b2 = 4 (patrz rys. 5).(0, 0)

C
(
√ 1)

C(
√

2)

C( √
3)

C
(
√ 4)

Rys. 5. Punkty kratowe na okręgach
o promieniach

√
n dla n = 1, 2, 3, 4

Bezpośrednie wykorzystanie Twierdzenia 1 dla obliczenia kolejnych R(n),
a następnie równości N(n) = R(0) + R(1) + . . . + R(n) dla obliczenia N(n)
byłoby niezmiernie żmudne dla dużych n. Jest jednak dużo prostszy sposób
obliczenia N(n). Najpierw obliczamy liczbę dzielników postaci 4k + 1 dla
wszystkich liczb naturalnych m nieprzekraczających n i od tej liczby odejmujemy
liczbę dzielników postaci 4k + 3, też dla wszystkich m ⩽ n, otrzymując:(

⌊n⌋ +
⌊n

5

⌋
+
⌊n
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⌋
+
⌊ n

13

⌋
+ . . .

)
−
(⌊n
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⌋
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⌋
+
⌊ n

11

⌋
+ . . .

)
Mnożąc powyższe wyrażenie przez 4 i dodając do niego jedynkę odpowiadającą

Na przykład dla n = 10 wśród liczb
1, 2, . . . , 10 mamy trzy będące postaci
4k + 1: 1, 5, 9. Przez 1 dzielą się wszystkie
z powyższej dziesiątki, 10 = ⌊ 10

1 ⌋, przez 5
dzielą się dwie, 2 = ⌊ 10

5 ⌋, przez 9 dzieli się
tylko jedna, 1 = ⌊ 10

9 ⌋. Przy tym ⌊ 10
13 ⌋

i wszystkie następne wyrazy szeregu
⌊10⌋ + ⌊ 10

5 ⌋ + ⌊ 10
9 ⌋ + ⌊ 10

13 ⌋ + . . . są równe
zero.

punktowi kratowemu (0, 0), po przegrupowaniu wyrazów, otrzymujemy
formułę (2). Bardziej formalne ujęcie rozważań przedstawionych w punkcie (i)
można znaleźć w artykule Deltowym Michała Krycha [Krych, 2019].

Obliczenia dla wielokątów. Przejdźmy do pytania (ii) o dokładne
wyznaczenie pola za pomocą zliczania punktów kratowych. Jedną z możliwych
odpowiedzi na to pytanie jest następujące twierdzenie z 1899 roku:
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Twierdzenie Picka. Pole dowolnego prostego wielokąta P , którego
wierzchołkami są punkty kratowe, jest dane wzorem

A = W + 1
2 B − 1,(5)

gdzie W jest liczbą punktów kratowych wewnątrz P , a B jest liczbą punktów
kratowych na brzegu P , wliczając wierzchołki.

Twierdzenie Picka łączy geometryczną teorię liczb z mierzeniem pól, czyli, jak
sama nazwa wskazuje, z klasyczną geometrią. Sama jego natura jest jednakże
topologiczna. Aby to zobaczyć, rozważymy prostszą, ale ogólniejszą sytuację.
Niech G będzie figurą płaską, złożoną z segmentów trójkątnopodobnych o tym
samym polu d, tak jak to widać na rysunku 6. Oznaczmy liczbę jej wierzchołków
wewnętrznych przez W , zewnętrznych przez B, liczbę krawędzi przez K, a pole
figury G przez A. Przypomnijmy ponadto równość Eulera: V − E + F = 1,
gdzie V , E i F to, odpowiednio, liczby wierzchołków, krawędzi i ścian grafu
narysowanego na płaszczyźnie bez przecinających się krawędzi.

W naszej sytuacji V = W + B, F = A
d i E = K. Pokażemy, że K = 3W + 2B − 3.

A
B

C D

E
F

G
H

Rys. 6. Dołączając jeden wierzchołek
i dwie krawędzie do obszaru A,
otrzymujemy obszar B i mamy
3 + 2 = 3 · 0 + 2 · 4 − 3. Dochodzimy w ten
sposób do 15 = 3 · 0 + 2 · 9 − 3 dla sumy
pierwszych siedmiu obszarów. Na koniec
dołączamy jedną krawędź zewnętrzną,
jeden wierzchołek zewnętrzny staje się
wtedy wierzchołkiem wewnętrznym
i mamy 16 = 3 · 1 + 2 · 8 − 3 dla całej
figury

Rzeczywiście wzór ten zachodzi dla pojedynczego obszaru trójkątnopodobnego,
gdyż mamy wtedy K = 3, W = 0, B = 3 i 3 = 3 · 0 + 2 · 3 − 3. Jeśli do tego obszaru
dołączymy podobny, przylegający do niego element naszej wyjściowej figury, to
prawdziwość tego wzoru się nie zmieni, i tak będzie aż do ułożenia całej figury –
rysunek 6 ilustruje, w jaki sposób dodawać kolejne obszary. Wstawiając teraz
postać V , E i F do równości Eulera, dostaniemy

A = 2dW + dB − 2d.

Dla d = 1
2 otrzymujemy stąd równanie (5).

Rys. 7. Pole figury po lewej stronie
obliczone ze wzoru (5) jest równe
A = 11 + 1

2 10 − 1 = 15. Po prawej stronie
jedna z triangulacji tej figury. Każdy
z 30 trójkątów podstawowych ma pole
równe 1

2

Dla dowodu twierdzenia Picka wystarczy pokazać, po pierwsze, że każdy obszar
z założeń tego twierdzenia można rozłożyć na trójkąty podstawowe, to znaczy
niezawierające punktów kratowych w swoich wnętrzach ani na swoich bokach
(z wyjątkiem wierzchołków) – dowód tej własności pomijamy, po drugie, że pole
każdego trójkąta podstawowego jest równe 1

2 i po trzecie, że dla całego obszaru
zachodzi równość K = 3W + 2B − 3.

To, że pole każdego trójkąta podstawowego jest równe 1
2 , wynika z rozumowania

użytego dla dowodu nierówności (1). Każdy trójkąt podstawowy można
uzupełnić do równoległoboku niemającego punktów kratowych w swoim wnętrzu
ani na krawędziach, a więc równoległoboku generującego siatkę opartą na
punktach kratowych. Załóżmy, że pole równoległoboku siatki jest równe α.
Wykorzystując otrzymaną siatkę do aproksymacji pola koła, podobnie jak
powyżej, otrzymujemy: ∣∣∣∣αN(n)

n
− π

∣∣∣∣ ⩽ 4Dπ√
n

,

gdzie D jest średnicą równoległoboku siatki. Jako że N(n)
n → π wraz ze

wzrostem n, to α = 1, a stąd α
2 = 1

2 .

Dowód równości K = 3W + 2B − 3 dla obszaru wielobocznego przeprowadzamy
jak powyżej, dobudowując kolejne trójkąty podstawowe.

Warto porównać przedstawiony schemat dowodu twierdzenia Picka z dowodem
Cauchy’ego równania Eulera dla wielościanów [Lakatos, 2005, str. 28–32],
aby zdać sobie sprawę z czyhających pułapek natury topologicznej w trakcie
dowodzenia metodą triangulacji. Na temat twierdzenia Picka, rozmaitych
jego dowodów i uogólnień istnieje obszerna literatura. O powiązaniu tego
twierdzenia z równaniem Eulera przeczytać można np. w [Detemple, 1974].
Ciekawe fizyczne intuicje związane z twierdzeniem Picka przedstawił Jarosław
Górnicki w artykule „Wodny” dowód twierdzenia Picka (∆12

24).
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