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Rys. 1. Okrag C(4) i okregi C(4 £ @)
pomagajace oszacowal liczbg punktow

kratowych
r=+/n N(n) N(n)/n
1 5 5
2 13 3,25
3 29 3,22
4 49 3,06
5 81 3,24
6 113 3,14
7 149 3,04
8 197 3,08
9 253 3,12
10 317 3,17
20 1257 3,14
30 2821 3,13
100 31417 3,1417
200 125629 3,1407
300 282697 3,1411
Rys. 2
r=+n N(n) Nn)/nxmr
400 502625 3,14141
500 785 349 3,14139
1000 3141 549 3,141549
10000 314159221 3,141592
100 000 31415939 281 3,141594
200 000 125663 759077 3,141594
Rys. 4

Grzeqorz LUKASZEWICZ*

W artykule Obliczenia pdl i objetosci — trzy metody geometryczne, Ass) opisaliémy
trzy geometryczne sposoby obliczania pél figur ptaskich. Celem tego artykutu jest
pokazanie, jak mozna aproksymowaé pole kota o promieniu r = /n, gdzie n jest
liczba naturalna, za pomoca zliczania punktow kratowych zawartych w tym kole
i na jego brzegu. Pokazemy takze, ze w przypadku wielokatow o wierzchotkach
w punktach kratowych znajomos¢ liczby punktéw kratowych w ich wnetrzach

i na ich brzegach wystarcza do dokladnego obliczenia pél tych wielokatéw.

Obliczenia dla okregu. Oznaczmy przez N (n) liczbe punktéw kratowych
na i wewnatrz okregu C(y/n) o érodku w poczatku ukladu wspélrzednych
i promieniu r = \/n (patrz rys. 1).

Jednym z pierwszych uczonych, ktérzy postawili pytanie o warto$é N(n), byl
Carl Friedrich Gauss. W roku 1837 napisal na ten temat artykut. Podal w nim
swoje obliczenia dla naturalnych r w zakresie od 1 do 300, patrz tabela na
rysunku 2. Z tabeli mozemy wywnioskowaé, ze wartosci % daza do liczby ,
gdy n ros$nie nieograniczenie. Aby to pokazaé, oszacujemy najpierw réznice
|N(n) — mn|. Skoro N(n) jest réwne sumie pél kwadratéw, ktérych srodki leza na
i wewnatrz okregu C'(y/n), to jest jasne (patrz rys. 1), ze
2 2
r(vi-2) <ne<n (Vi)

2
skad wynika, ze

0 2ol (24 ).

Prawa strona ostatniej nieréwnosci dazy do zera wraz z nieograniczonym
wzrostem n. Powyzsza nierownos¢ mozemy odczytaé jako

N(n) —7mn \/? 1
— | S\ -+
n  2n

™
co oznacza, ze warto$¢ wzgledna (w stosunku do pola kola o promieniu /n)
réznicy pomiedzy liczba punktéw kratowych w tym kole, razem z jego brzegiem,
a polem tego kota dazy do zera wraz ze wzrostem promienia tego kota. Wartoséé
wzgledna tej réznicy jest rzedu ﬁ, czyli odwrotnosci promienia kota.

Na podstawie tabeli z rysunku 2 mozna obliczy¢ te réznice z duza doktadnoscia,

. . . . e . . 292
biorac np. za liczbe 7 jej przyblizenie Archimedesowe =

3,136

3,134 ’
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Rys. 3. Ilustracja zbieznosci N(n?)/n? — «

Wykres na rysunku 3 pokazuje, w jaki sposéb fo;z) zbliza sie do liczby m wraz

ze wzrostem r w zakresie 0 < r < 300. Tabela na rysunku 4 pokazuje wyliczenia
dla wigkszych wartosci .

Nasuwaja sie dwa pytania.

(i) Czy istniejg wzory okreslajgce N(n) w zaleznodci od n?

(ii) Czy moze istniejq figury plaskie, dla ktdrych liczba punktéw kratowych
lezgcych w ich wnetrzu © na ich brzegu wyraza nie tylko w przyblizeniu, ale —
poprzez konkretng formule — doktadnie pola tych figur?
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Podtloga |z ] liczby = to najwigksza liczba

catkowita nie wieksza od z. formula Gaussa:

Przyktadowe wartosci N(n):

N(O) =1 (2)
N1)=1+44=5

N2 =1+4-2=9
NB)=1+4-3-4=9

4)

Na oba te pytania odpowiedZ jest pozytywna. Odpowiedzia na pytanie (i) jest

o= ta(un - 5+ 3]~ 2]+ 3]~ L] )

gdzie |-] jest funkcja podlogi. Latwo stad wyznaczy¢ bezposrednio wartosci dla
n=0,1,2,3,4 (na marginesie). Z réwnosci N(2) = N(3) mozemy wywnioskowad,
ze na okregu C(1/3) nie ma zadnych punktéw kratowych, a z tego, ze

N(4) — N(3) = 4, wynika, ze na okregu C(v/4) jest ich 4.

Zanim przejdziemy do dowodu wzoru Gaussa, wykazemy jedna z jego
konsekwencji, stynny wzoér Leibniza:

(3)

Zalézmy, ze \/n jest liczba naturalna nieparzysta.
Napiszmy wzér Gaussa ([2)) w postaci:

i(N(n)A) = |n|— gJ + EJ - {%J b H%J N
gdzie 6 jest ulamkiem wlaéciwym. Korzystamy tu

7 tego, ze szereg jest naprzemienny, a moduly jego
wyrazéw tworza cigg nierosnacy. Wtedy modut

reszty szeregu jest nie wiekszy od modutu pierwszego
odrzuconego wyrazu, czyli Lﬁj Liczba ta jest

mniejsza od liczby naturalnej L%J = \/n, mozna ja
zatem zapisaé jako 0+/n, gdzie 0 jest jak wyzej.

Nastepny krok to zastapienie funkcji podtogi utamka
samym utamkiem. Poniewaz T — || <1, a liczba

zachowanych wyrazow szeregu jest réwna @ < +/n,
wiec
%(N(n)—l)zn—g—l—%—g—i—...i%iﬁ\/ﬁiﬁ'\/ﬁ,
gdzie ¢’ jest takze ulamkiem wlasciwym. Dzielac teraz
obie strony przez n, otrzymujemy
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Dla przyktadu R(3) =
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dla liczb n przebiegajacych ciag kwadratow liczb
nieparzystych.
Biorac pod uwage zbieznosé % — 7 wynikajaca
z oszacowania (1) i zbiegajac z n do nieskoriczonosci,
dostajemy wzor Leibniza (3)).

PrzejdZzmy teraz do dowodu formuty Gaussa. Jesli przez
R(n) oznaczymy liczbe punktéw kratowych na okregu
C(y/n), to N(n) = R(0) + R(1) + ... + R(n). Znajac
wartosci R(k) dla poszczegdlnych k, mozemy obliczyé
N(n), i taka tez byla droga odkrycia powyzszej formuly
Gaussa. Rzecz sprowadza si¢ zatem do pytania o liczbe
pierwiastkow catkowitych a, b réwnania

(4) a2+t =n
dla danej liczby naturalnej n. Mamy nastepujace:

Twierdzenie 1 (za [Hilbert, 1956]). Liczba
przedstawien liczby catkowitej n jako sumy kwadratow
dwdoch liczb calkowitych jest réwna czterokrotnosci
réznicy liczby dzielnikow liczby n o postaci 4k + 1 ¢ liczby
dzielnikow o postaci 4k + 3.

N(3) — N(2) = 0. Liczba pierwsza 3 ma jedynie

dzielniki 1 i 3, wiec na mocy powyzszego twierdzenia R(3) = 4(1 —1) = 0.
Dalej: R(4) = N(4) — N(3) = 4. Wér6d dzielnikéw liczby 4 (czyli 1,2,4)

nie ma dzielnikéw postaci 4k + 3, wiec z twierdzenia otrzymujemy

R(4) = 4(1 — 0) = 4. T rzeczywiscie, na okregu C(v/4) mamy cztery punkty
kratowe, (2,0), (0,2), (—2,0), (0, —2), bedace calkowitymi rozwiazaniami réwnania
a® +b? = 4 (patrz rys. 5).

Bezposrednie wykorzystanie Twierdzenia 1 dla obliczenia kolejnych R(n),
a nastepnie réwnosci N(n) = R(0) + R(1) + ... + R(n) dla obliczenia N(n)
bytoby niezmiernie zmudne dla duzych n. Jest jednak duzo prostszy sposéb

obliczenia N (n). Najpierw obliczamy liczbe dzielnikéw postaci 4k + 1 dla

Rys. 5. Punkty kratowe na okreggach
o promieniach y/n dlan =1,2,3,4

wszystkich liczb naturalnych m nieprzekraczajacych n i od tej liczby odejmujemy

liczbe dzielnikéw postaci 4k + 3, tez dla wszystkich m < n, otrzymujac:

Na przyktad dla n = 10 wsréd liczb
1,2,...,10 mamy trzy bedace postaci

4k +1: 1, 5, 9. Przez 1 dzielg si¢ wszystkie
z powyzszej dziesigtki, 10 = [ 2], przez 5
dziely si¢ dwie, 2 = L%OJ, przez 9 dzieli si¢
tylko jedna, 1 = [ 10 ]. Przy tym |13

i wszystkie nastepne wyrazy szeregu

[10] + [ 2] + [ 2] + [13) + ... sa réwne
Zero.

(5] +|

Mnozac powyzsze wyrazenie przez 4 i dodajac do niego jedynke odpowiadajaca
punktowi kratowemu (0, 0), po przegrupowaniu wyrazéw, otrzymujemy
formule (2). Bardziej formalne ujecie rozwazan przedstawionych w punkcie (i)
mozna znalezé w artykule Deltowym Michala Krycha [Krych, 2019].

ol il ) - (Gl F )+ L)+

Obliczenia dla wielokatéw. Przejdzmy do pytania (ii) o dokladne
wyznaczenie pola za pomocs zliczania punktéw kratowych. Jedna z mozliwych
odpowiedzi na to pytanie jest nastepujace twierdzenie z 1899 roku:
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Twierdzenie Picka. Pole dowolnego prostego wielokgta P, ktorego

i wierzchotkami sq punkty kratowe, jest dane wzorem

(5) A=W +1iB -1,

gdzie W jest liczbg punktow kratowych wewnqgtrz P, a B jest liczbg punktow
kratowych na brzegu P, wliczajgc wierzcholksi.
Twierdzenie Picka laczy geometryczng teorie liczb z mierzeniem pdl, czyli, jak
sama nazwa wskazuje, z klasyczng geometriag. Sama jego natura jest jednakze
Rys. 6. Dolaczajac jeden wierzcholek topologiczna. Aby to zobaczy¢, rozwazymy prostsza, ale ogélniejsza sytuacje.
i dwie krawgdzie do obszaru A, Niech G bedzie figura plaska, zlozona z segmentéw tréjkatnopodobnych o tym
gtj_zgriuée.néy:; ?Zfr_%_l];’:;rﬁlg dzimy w ten  Samym polu d, tak jak to wida¢ na rysunku 6. Oznaczmy liczbe jej wierzchotkéw
sposéb do 15 =3-0+2-9 -3 dlasumy  wewnetrznych przez W, zewnetrznych przez B, liczbe krawedzi przez K, a pole

pierwszych siedmiu obszaréw. Na koniec - . 2 4 . _ _
dolaczamy jedng, krawed? zewnctrzna, figury G przez A. Przypomnijmy ponadto réwnosé Eulera: V — E+ F =1,

jeden wierzchotek zewngtrzny staje sig gdzie V., E i F to, odpowiednio, liczby wierzchotkéw, krawedzi i Scian grafu
wtedy wierzchotkiem wewnetrznym 1 snie b . h sie k dzi

i mamy 16 = 3-1+2-8 — 3 dla calej narysowanego na plaszczyznie bez przecinajacych sie krawedzi.

figury

W naszej sytuacji V=W + B, F = % i E = K. Pokazemy, ze K =3W + 2B — 3.
Rzeczywiscie wzér ten zachodzi dla pojedynczego obszaru trojkatnopodobnego,
gdyz mamy wtedy K =3, W =0, B=3i3=3-0+2-3— 3. Jesli do tego obszaru
dotaczymy podobny, przylegajacy do niego element naszej wyjsciowej figury, to
prawdziwos¢ tego wzoru sie nie zmieni, i tak bedzie az do ulozenia calej figury —
rysunek 6 ilustruje, w jaki sposob dodawac kolejne obszary. Wstawiajac teraz
posta¢ V', E i F' do réwnosci Eulera, dostaniemy

A=2dW +dB — 2d.

Dla d = % otrzymujemy stad réwnanie (5)).

Rys. 7. Pole figury po lewej stronie
obliczone ze wzoru (5) jest réwne

A =11+ %10 — 1 = 15. Po prawej stronie
jedna z triangulacji tej figury. Kazdy . . . , . . .
2 30 tréjkatéw podstawowych ma pole Dla dowodu twierdzenia Picka wystarczy pokazaé¢, po pierwsze, ze kazdy obszar

réwne 3 z zalozen tego twierdzenia mozna rozlozyé na trojkaty podstawowe, to znaczy
niezawierajace punktow kratowych w swoich wnetrzach ani na swoich bokach
(z wyjatkiem wierzcholkéw) — dowdd tej wlasnosci pomijamy, po drugie, ze pole
kazdego trojkata podstawowego jest rowne % i po trzecie, ze dla calego obszaru
zachodzi rownosé K = 3W + 2B — 3.

To, ze pole kazdego tréjkata podstawowego jest réwne %, wynika z rozumowania
uzytego dla dowodu nieréwnosci (1). Kazdy tréjkat podstawowy mozna
uzupelnié¢ do réwnolegtoboku niemajacego punktéow kratowych w swoim wnetrzu
ani na krawedziach, a wiec réwnolegloboku generujacego siatke oparta na
punktach kratowych. Zatézmy, ze pole rownolegltoboku siatki jest rowne «.
Wykorzystujac otrzymana siatke do aproksymacji pola kota, podobnie jak

powyzej, otrzymujemy: N(n) ADx
|

X \/ﬁ )
(n)

gdzie D jest érednicg réwnolegloboku siatki. Jako ze NT — T Wraz ze

wzrostem n, to a =1, a stad § = %

n

Dowdéd réwnosci K = 3W + 2B — 3 dla obszaru wielobocznego przeprowadzamy
jak powyzej, dobudowujac kolejne tréjkaty podstawowe.

Warto poréwnaé przedstawiony schemat dowodu twierdzenia Picka z dowodem
Cauchy’ego réwnania Eulera dla wieloScianéw [Lakatos, 2005, str. 28—-32],

aby zdaé sobie sprawe z czyhajacych putapek natury topologicznej w trakcie
dowodzenia metoda triangulacji. Na temat twierdzenia Picka, rozmaitych

jego dowoddéw i uogdlnien istnieje obszerna literatura. O powigzaniu tego
twierdzenia z réwnaniem Eulera przeczyta¢ mozna np. w [Detemple, 1974].
Ciekawe fizyczne intuicje zwiazane z twierdzeniem Picka przedstawil Jarostaw
Gérnicki w artykule ,,Wodny” dowdéd twierdzenia Picka (A33).
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