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O rozwazaniach teoretycznych, ktére
umozliwily eksperymentalne
potwierdzenie indeterminizmu (czyli
nieprzewidywalnosci) kwantowych zjawisk,
mozna przeczytaé w Agl oraz w Aél.

Dowolng liczbe zespolona mozna zapisaé
w postaci z = a + b, gdzie a,b € R.
Wida¢ stad, ze istnieje jednoznaczna
odpowiednio$¢ migdzy liczbami
zespolonymi a parami liczb rzeczywistych.
Sprzezeniem zespolonym liczby z
nazywamy zZ = a — ib. Zwiezle i eleganckie
wprowadzenie do liczb zespolonych
przedstawil Marek Kordos w|A12]
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Rzeczywiscie zespolona?
Patryk MICHALSKI*

Rowno wiek temu nastapito wielkie wzmozenie pracy wybitnych umystow,
ktore po kilku latach tworczego fermentu zaowocowalo powstaniem mechaniki
kwantowej w formie, jaka znamy dzis. Nowa teoria wymierzyla liczne ciosy
»zdrowemu rozsadkowi”, sprowadzajac na manowce nawet postaci pokroju
Alberta Einsteina. Szczegélnie silny zgrzyt z utartymi klasycznymi intuicjami —
budzacy gteboki niepokdj tworcy teorii wzglednosci — wywotata zasada gloszaca,
ze wynik pojedynczego pomiaru kwantowego nie jest przez nic z géry okreslony:
mozna przewidzie¢ jedynie prawdopodobienstwo otrzymania danego wyniku.
Spor dotyczacy tej kwestii sprowadzal sie w gruncie rzeczy do pytania, czy

nasz $wiat jest, czy tez nie jest deterministyczny — i zostal catkiem niedawno
rozstrzygniety na korzys$¢ mechaniki kwantowej dzieki stynnym nieréwnosciom
Bella. Zdrowy rozsadek jak zwykle okazal sie — cytujac Einsteina — ,zbiorem
przesadéw nabytych w dziecinstwie”.

Jeszcze inny problem nurtowal twércéw mechaniki kwantowej juz u jej zarania,
choé¢ szybko o nim zapomniano. Dotyczyt on pewnego szczegdlnego obiektu,
ktéry zdawal sie nierozerwalnie spleciony z matematyczna maszyneria teorii, lecz
znikal, gdy tylko docierano w obliczeniach do wielkosci, ktore rzeczywiscie da
si¢ zmierzy¢. Tak pisal o tym Erwin Schrédinger w liscie do Hendrika Lorentza
7z 6 czerwca 1926 roku [1]:

,2Najbardziej razace — i zastugujace na bezpoéredni sprzeciw — jest tutaj
uzycie liczb zespolonych”.

Liczby zespolone to osobliwe stworzenia. Powstaja jako rozszerzenie zbioru

liczb rzeczywistych poprzez ,,dorzucenie” do niego jednostki urojonej, ktorej
kwadrat z definicji jest réwny minus jeden: i> = —1. Jak sama nazwa wskazuje, na
pierwszy rzut oka trudno te wielko$¢ odnies¢ do jakichkolwiek przyziemnych
ludzkich do$wiadczen. Dlaczego wiec pojawia sie w modelu opisujacym
rzeczywistos¢?

Trzeba zaznaczyé, ze fizycy poznali liczby zespolone (i zaczeli je darzy¢
szczegdlnym uczuciem) na dlugo przed kwantowym przelomem. Sek w tym,

ze w ramach klasycznych teorii stuzyly one wylacznie jako potezne narzedzie
ulatwiajace rachunki. Bez liczb zespolonych klasyczna XIX-wieczna fizyka

tez by sobie poradzila — tylko potrzebowalaby do tego troche wiecej papieru.

Z mechanika kwantowa bylo inaczej. Jednostka urojona wprosita sie do
najbardziej fundamentalnych réwnan i nikt nie znalazt prostego sposobu, by sie
jej stamtad pozby¢. Poczatkowe oburzenie Ojcéw Zalozycieli minglo jednak, gdy
nowa teoria zaczela osiagaé pierwsze donioste sukcesy, a tym samym okazala sig
bardzo uzytecznym narzedziem. Temat czekal, zamieciony pod dywan, budzac
przez dtugi czas jedynie Sladowe zainteresowanie srodowiska naukowego.

Sytuacja zmienila si¢ pie¢ lat temu, gdy grupa fizykéw pod kierunkiem
Miguela Navascuésa rzucila nieco $wiatta na pytanie o role liczb zespolonych
w kwantowomechanicznym formalizmie [2]. Pokazali oni, ze przyjmujac pewne
standardowe zalozenia dotyczace matematycznej struktury teorii, zadna
alternatywna wersja mechaniki kwantowej oparta wylacznie na liczbach
rzeczywistych nie jest w stanie odtworzy¢ wszystkich przewidywan wersji
zespolonej. Co wigcej, zaproponowali schemat umozliwiajacy eksperymentalne
sprawdzenie, ktora wersja jest ta wlasciwa. Zanim jednak pochylimy sie nad
pomystami stojacymi za tym wynikiem, przyjrzyjmy sie blizej, jak liczby
zespolone pojawiaja sie¢ w opisie kwantowych zjawisk — i jaka taktyke mozna
by przyjac¢, zeby sie ich pozby¢.

Przywolamy najpierw najwazniejszy sposréd wspomnianych wyzej
standardowych postulatéw lezacych u podstaw mechaniki kwantowej. Zgodnie

z nim dowolnemu ukltadowi fizycznemu przyporzadkowaé mozna zbiér H zlozony
z wektorow, ktéry nazywa sie przestrzeniqg Hilberta. W zbiorze H zdefiniowane
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Iloczyn skalarny dwéch wektorow

¢, € H oznaczamy jako (¢p|).

Dziatanie to ma nastepujace wlasnosci:

o (2lY) = (¥l9),

e Dla ¢ = c19¢1 + c212 zachodzi
(¢lY) = c1 (S|Y1) + c2 (B|¢2).

Rozwazmy dwie pary wektorow:

¢1,%1 € Hi oraz ¢a, P2 € Ha. Wowczas
iloczyn skalarny wektoréw ¢1 ® ¢2 oraz
Y1 @ P2 € H1 ® Ha jest zdefiniowany jako
(B1]1) (B2]tp2).

Przyktadowo przestrzen Hilberta dwéch
spoczywajacych elektronéw ma zespolony
wymiar cztery w konwencjonalnej teorii,
a szesnascie (a nie osiem!) w przypadku
modyfikacji uzywajacej wyltacznie liczb
rzeczywistych. W drugim wypadku
dysponujemy wiec zbyt duzg liczba
parametréw rzeczywistych, w poréwnaniu
ze standardowsg zespolong mechanikg
kwantowg.

jest dzialanie nazywane iloczynem skalarnym, ktére ,poltyka” dowolne dwa
wektory, a ,wypluwa” liczbe. Kazdy stan kwantowy uktadu jest reprezentowany
przez wektor nalezacy do przestrzeni H, ktérego iloczyn skalarny z samym soba
wynosi jeden (o takim wektorze méwimy, ze jest znormalizowany). W wektorze
stanu zakodowane sa informacje pozwalajace wyznaczy¢ prawdopodobienstwa
wynikéw dowolnego pomiaru. Istotny punkt: skladowe wektorow stanu moga
by¢ albo liczbami zespolonymi, albo rzeczywistymi — zaleznie od rozpatrywanej
wersji teorii. Przyjmijmy na razie, ze to jedyne, czym obie wersje moga sie od
siebie réznic.

Wezmy teraz pod lupe najprostszy kwantowy uktad — spoczywajacy elektron.
Doswiadczenia przeprowadzone w 1922 roku przez Otto Sterna i Waltera
Gerlacha wykazaly, ze kazdy elektron posiada wewnetrzny moment pedu
nazywany spinem. O ile klasyczny moment pedu wynika z ruchu obrotowego, tak
spin jest po prostu ,2wbudowana” wtasnoscia czastki, jak na przyklad tadunek
elektryczny. Zeby bylo ciekawiej, jesli zmierzymy spin elektronu wzdluz dowolnie
wybranej osi, to mozemy uzyska¢ tylko dwa wyniki: albo spin skierowany

jest ,w gore”, albo ,w dol”, nic pomiedzy. Naturalne jest wiec zalozy¢, ze
przestrzen Hilberta takiego elektronu ma baze ztozona z dwéch wektorow,
ktore odpowiadaja dwém mozliwym stanom. Dowolny wektor stanu da sie
przedstawi¢ jako znormalizowana kombinacje wektoréw bazowych — fachowo
nazywa sie to superpozycjg. Wiemy poza tym, ze kazdy wektor stanu powinien
umozliwi¢ wyznaczenie prawdopodobienstwa uzyskania wyniku ,,w gore” lub

,w dét” wzdtuz dowolnej z trzech osi wspétrzednych, a do tego potrzeba trzech
rzeczywistych parametrow.

Policzmy, ile parametréw mozna zakodowaé w wektorze stanu w obydwu
wariantach teorii. W wersji zespolonej dwie sktadowe daja cztery parametry
rzeczywiste (kazda liczba zespolona to dwa parametry), jeden odpada przez
normalizacje, wiec zostaja trzy parametry — dokladnie tyle, ile trzeba. Ale jesli
wektor ma rzeczywiste sktadowe, to... jestedmy zgubieni — po uwzglednieniu
normalizacji zostaje tylko jeden parametr rzeczywisty! To za malo. Bez
kombinowania nie da sie opisa¢ spinu elektronu tylko za pomoca liczb
rzeczywistych.

Wida¢ wyraznie, ze alternatywna wersja mechaniki kwantowej wykorzystujaca
wylacznie liczby rzeczywiste musi opisywacé spoczywajacy elektron przy

uzyciu przestrzeni Hilberta, ktéra ma cztery, a nie dwa, wymiary. W ogdlnym
przypadku nalezy podwoi¢ wymiar przestrzeni zwiazanej z uktadem. To oznacza
obecno$¢ dodatkowych standéw, ktore z jakiego$ powodu nie sa rozrézniane przez
nasze urzadzenia pomiarowe. Pomyst moze wyglada dziwnie, ale nie mozna

go odrzuci¢ wylacznie na podstawie upodoban estetycznych. Szczegdlnie, ze
opierajac si¢ na tym pomysle, dla dowolnego uktadu sktadajacego sie z jednej
czastki o jednym stopniu swobody da si¢ wymysli¢ konstrukcje, ktéra daje
identyczne przewidywania jak teoria zespolona. Powtérzmy: jednej czastki

o jednym stopniu swobody. A co z ukladami, ktére nie maja tej wlasnosci?

Tu trzeba przywolaé kolejny standardowy postulat: jezeli uklad fizyczny

sklada sie z dwoch podukladéw, ktérym odpowiadaja przestrzenie Hilberta

‘H1 oraz Hs, to przestrzen Hilberta calego ukladu ma strukture ¢loczynu
tensorowego H1 @ Ho. Z grubsza rzecz biorac, zbiér Hi ® Ho to przestrzen
wektorowa, ktorej baze stanowig uporzadkowane pary wektoréw bazowych
przestrzeni H, i Ho z odpowiednio zdefiniowanym iloczynem skalarnym. Stad
wynika, ze wymiar przestrzeni calego uktadu to iloczyn wymiaréw przestrzeni
odpowiadajacych poszczegdlnym podukladom. Ustalilidmy juz wczesdniej, ze
przestrzen wymiaru zespolonego n jest w pewnym sensie réwnowazna przestrzeni
wymiaru rzeczywistego 2n. Jezeli wigc mamy dwie przestrzenie zespolonych
wymiaréw, n i m, to zespolony wymiar ich iloczynu tensorowego jest réwny nm,
a odpowiadajace im rzeczywiste przestrzenie maja wymiary réwne, odpowiednio,
2n, 2m oraz 2nm. Natomiast rzeczywisty wymiar iloczynu dwdch przestrzeni
wymiarow 2n i 2m jest rowny 4nm. Widaé wigc, ze jest zasadnicza réznica
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Jak wygladaja rachunki dotyczace
nieréwnosci Bella, mozna przeczytaé we

wspomnianych juz artykutach w Agl oraz
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miedzy tensorowym rozmnazaniem przestrzeni nad liczbami zespolonymi

i rzeczywistymi. Pojawia sie wiec potencjalna mozliwo$¢ sprawdzenia, ktéry
sposob opisu lepiej pasuje do rzeczywistosci doswiadczalnej. Grupa Navascuésa
postanowila wykorzystaé¢ pojawiajaca si¢ tu ryse, zainspirowana pomystem,
ktéry pozwolil wezesniej potwierdzi¢ indeterminizm zjawisk kwantowych.

Rozwazmy Zrodio czastek, w ktorym zachodzi proces kreacji pary
elektron—pozyton. W przypadku gdy w rozwazanym procesie catkowity
moment pedu uktadu znika, sktadowe spinu powstatych w procesie czastek
wzdluz dowolnego kierunku musza by¢ przeciwnie skierowane. Obie czastki
wysytamy do odleglych obserwatoréw: elektron w jedna, a pozyton w druga
strone. Obserwatorzy dysponuja dwoma detektorami mierzacymi rzut spinu
ustawionymi w réznych kierunkach i w kazdym powtérzeniu eksperymentu
wybieraja losowo, z ktérego detektora korzystaja, wykonujac pomiar na
otrzymanej czastce. Jesli uzyskaja wynik ,,w gére”, to przypisuja mu warto$c¢ +1,
a jesli ,w doét”, to —1. Potem wspdélnie wyliczajg wartos¢ pewnego wyrazenia,
ktore zalezy od rezultatu pomiaréw i wybranych kierunkéw detektoréow. Po
wielu powtorzeniach eksperymentu mozna wyliczy¢ srednia wartosé tego
wyrazenia, ktora oznaczymy przez S. W 1964 roku John Bell pokazal, ze przy
odpowiednio sprytnym doborze wyrazenia i kierunkow detektorow dla teorii
deterministycznych zachodzi zawsze S < 2, a mechanika kwantowa dopuszcza
nawet S = 2v/2.

Moze wiec daloby sie tak dobra¢ wspomniane wyrazenie i kierunki detektorow,
zeby S byla ograniczona dla ,rzeczywistej” modyfikacji mechaniki kwantowej,

a dla konwencjonalnej teorii mogta osiaga¢ wieksze wartosci? Okazuje sie, ze

W opisanym scenariuszu nie jest to mozliwe. Wystarczy jednak wprowadzié¢
kilka drobnych ulepszeri: dodaé jedno Zrédlo i jednego obserwatora (wtedy jeden
obserwator otrzymuje dwie czastki, na ktérych wykonuje jednoczesny pomiar)
oraz zwiekszy¢ liczbe detektorow w dyspozycji obserwatorow. W tej konfiguracji
mozna znalezé takie wyrazenie i kierunki, ze dla dowolnej modyfikacji teorii,
ktéra uzywa wytacznie liczb rzeczywistych oraz spetnia opisane wyzej postulaty,
zachodzi S < 7,66. Standardowa teoria dopuszcza zaé S = 6v/2 ~ 8,48.

Wykonano juz dwa eksperymenty, ktérych wyniki wskazuja na stusznosé
standardowej wersji mechaniki kwantowej — w obydwu przypadkach
nieréwno$¢ obowiazujaca dla teorii opartych na liczbach rzeczywistych zostalta
zlamana [3] 4]. Nie jest to ostateczny werdykt, ale bardzo silna przeslanka.
Zamiast popada¢ w samozadowolenie, zastanéwmy sie jednak, jakie wnioski
mozna z tego wszystkiego wyciagnaé. Z duzym prawdopodobienistwem nalezy
odrzuci¢ mozliwosé, ze formalizm mechaniki kwantowej da sie¢ oprzeé¢ wytacznie
na liczbach rzeczywistych, jesli ma spelnia¢ wspomniane wyzej standardowe
postulaty. Moze jednak daloby sie odrzuci¢ jedno z krepujacych zatozen?
Najmniej kontrowersyjnym kandydatem wydaje si¢ ostatni postulat, ten
dotyczacy iloczynu tensorowego. W zamian nalezaloby wtedy zaproponowaé
inny przepis na modelowanie ztozonych uktadéw.

W istocie da sie to zrobié¢, wystarczy tylko uzyé pomystowego sposobu zapisu
jednostek rzeczywistej i urojonej:

= 1) =0 )

Latwo sprawdzi¢, ze powyzsze macierze zachowuja sie dokladnie tak, jak
powinny. Przy odrobinie sprytu da sie na tej podstawie zbudowaé rzeczywista
teorie, ktéra nie przestrzega postulatu iloczynu tensorowego i daje identyczne
przewidywania jak zespolona wersja — wystarczy w odpowiedni sposéb zastapié
wszystkie liczby zespolone macierzami [5]. Czy jednak nie jest to po prostu
»zakamuflowane” uzycie liczb zespolonych? Mozna powiedzieé, ze tak. Spéjrzmy
na to z innej strony. Ten pozorny kamuflaz pokazuje, ze liczby zespolone wcale
nie s3 tak odlegle od rzeczywistosci, jak mogloby sie wydawaé. Tak jak niegdys
w przypadku liczb niewymiernych czy ujemnych, zdrowy rozsadek znéw okazuje
si¢ niezbyt dobrym doradca w sprawach zmatematyzowanego opisu Swiata.
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