
Rzeczywiście zespolona?
Patryk MICHALSKI** Student, Wydział Fizyki, Uniwersytet

Warszawski
Równo wiek temu nastąpiło wielkie wzmożenie pracy wybitnych umysłów,
które po kilku latach twórczego fermentu zaowocowało powstaniem mechaniki
kwantowej w formie, jaką znamy dziś. Nowa teoria wymierzyła liczne ciosy
„zdrowemu rozsądkowi”, sprowadzając na manowce nawet postaci pokroju
Alberta Einsteina. Szczególnie silny zgrzyt z utartymi klasycznymi intuicjami –
budzący głęboki niepokój twórcy teorii względności – wywołała zasada głosząca,
że wynik pojedynczego pomiaru kwantowego nie jest przez nic z góry określony:
można przewidzieć jedynie prawdopodobieństwo otrzymania danego wyniku.
Spór dotyczący tej kwestii sprowadzał się w gruncie rzeczy do pytania, czy
nasz świat jest, czy też nie jest deterministyczny – i został całkiem niedawno
rozstrzygnięty na korzyść mechaniki kwantowej dzięki słynnym nierównościom
Bella. Zdrowy rozsądek jak zwykle okazał się – cytując Einsteina – „zbioremO rozważaniach teoretycznych, które

umożliwiły eksperymentalne
potwierdzenie indeterminizmu (czyli
nieprzewidywalności) kwantowych zjawisk,
można przeczytać w ∆5

01 oraz w ∆2
21.

przesądów nabytych w dzieciństwie”.

Jeszcze inny problem nurtował twórców mechaniki kwantowej już u jej zarania,
choć szybko o nim zapomniano. Dotyczył on pewnego szczególnego obiektu,
który zdawał się nierozerwalnie spleciony z matematyczną maszynerią teorii, lecz
znikał, gdy tylko docierano w obliczeniach do wielkości, które rzeczywiście da
się zmierzyć. Tak pisał o tym Erwin Schrödinger w liście do Hendrika Lorentza
z 6 czerwca 1926 roku [1]:

„Najbardziej rażące – i zasługujące na bezpośredni sprzeciw – jest tutaj
użycie liczb zespolonych”.

Liczby zespolone to osobliwe stworzenia. Powstają jako rozszerzenie zbioru
liczb rzeczywistych poprzez „dorzucenie” do niego jednostki urojonej, której
kwadrat z definicji jest równy minus jeden: i2 = −1. Jak sama nazwa wskazuje, naDowolną liczbę zespoloną można zapisać

w postaci z = a + ib, gdzie a, b ∈ R.
Widać stąd, że istnieje jednoznaczna
odpowiedniość między liczbami
zespolonymi a parami liczb rzeczywistych.
Sprzężeniem zespolonym liczby z
nazywamy z̄ = a − ib. Zwięzłe i eleganckie
wprowadzenie do liczb zespolonych
przedstawił Marek Kordos w ∆12

17.

pierwszy rzut oka trudno tę wielkość odnieść do jakichkolwiek przyziemnych
ludzkich doświadczeń. Dlaczego więc pojawia się w modelu opisującym
rzeczywistość?

Trzeba zaznaczyć, że fizycy poznali liczby zespolone (i zaczęli je darzyć
szczególnym uczuciem) na długo przed kwantowym przełomem. Sęk w tym,
że w ramach klasycznych teorii służyły one wyłącznie jako potężne narzędzie
ułatwiające rachunki. Bez liczb zespolonych klasyczna XIX-wieczna fizyka
też by sobie poradziła – tylko potrzebowałaby do tego trochę więcej papieru.
Z mechaniką kwantową było inaczej. Jednostka urojona wprosiła się do
najbardziej fundamentalnych równań i nikt nie znalazł prostego sposobu, by się
jej stamtąd pozbyć. Początkowe oburzenie Ojców Założycieli minęło jednak, gdy
nowa teoria zaczęła osiągać pierwsze doniosłe sukcesy, a tym samym okazała się
bardzo użytecznym narzędziem. Temat czekał, zamieciony pod dywan, budząc
przez długi czas jedynie śladowe zainteresowanie środowiska naukowego.

Sytuacja zmieniła się pięć lat temu, gdy grupa fizyków pod kierunkiem
Miguela Navascuésa rzuciła nieco światła na pytanie o rolę liczb zespolonych
w kwantowomechanicznym formalizmie [2]. Pokazali oni, że przyjmując pewne
standardowe założenia dotyczące matematycznej struktury teorii, żadna
alternatywna wersja mechaniki kwantowej oparta wyłącznie na liczbach
rzeczywistych nie jest w stanie odtworzyć wszystkich przewidywań wersji
zespolonej. Co więcej, zaproponowali schemat umożliwiający eksperymentalne
sprawdzenie, która wersja jest tą właściwą. Zanim jednak pochylimy się nad
pomysłami stojącymi za tym wynikiem, przyjrzyjmy się bliżej, jak liczby
zespolone pojawiają się w opisie kwantowych zjawisk – i jaką taktykę można
by przyjąć, żeby się ich pozbyć.

Przywołamy najpierw najważniejszy spośród wspomnianych wyżej
standardowych postulatów leżących u podstaw mechaniki kwantowej. Zgodnie
z nim dowolnemu układowi fizycznemu przyporządkować można zbiór H złożony
z wektorów, który nazywa się przestrzenią Hilberta. W zbiorze H zdefiniowane
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jest działanie nazywane iloczynem skalarnym, które „połyka” dowolne dwaIloczyn skalarny dwóch wektorów
ϕ, ψ ∈ H oznaczamy jako ⟨ϕ|ψ⟩.
Działanie to ma następujące własności:
• ⟨ϕ|ψ⟩ = ⟨ψ|ϕ⟩,
• Dla ψ = c1ψ1 + c2ψ2 zachodzi

⟨ϕ|ψ⟩ = c1 ⟨ϕ|ψ1⟩ + c2 ⟨ϕ|ψ2⟩.

wektory, a „wypluwa” liczbę. Każdy stan kwantowy układu jest reprezentowany
przez wektor należący do przestrzeni H, którego iloczyn skalarny z samym sobą
wynosi jeden (o takim wektorze mówimy, że jest znormalizowany). W wektorze
stanu zakodowane są informacje pozwalające wyznaczyć prawdopodobieństwa
wyników dowolnego pomiaru. Istotny punkt: składowe wektorów stanu mogą
być albo liczbami zespolonymi, albo rzeczywistymi – zależnie od rozpatrywanej
wersji teorii. Przyjmijmy na razie, że to jedyne, czym obie wersje mogą się od
siebie różnić.

Weźmy teraz pod lupę najprostszy kwantowy układ – spoczywający elektron.
Doświadczenia przeprowadzone w 1922 roku przez Otto Sterna i Waltera
Gerlacha wykazały, że każdy elektron posiada wewnętrzny moment pędu
nazywany spinem. O ile klasyczny moment pędu wynika z ruchu obrotowego, tak
spin jest po prostu „wbudowaną” własnością cząstki, jak na przykład ładunek
elektryczny. Żeby było ciekawiej, jeśli zmierzymy spin elektronu wzdłuż dowolnie
wybranej osi, to możemy uzyskać tylko dwa wyniki: albo spin skierowany
jest „w górę”, albo „w dół”, nic pomiędzy. Naturalne jest więc założyć, że
przestrzeń Hilberta takiego elektronu ma bazę złożoną z dwóch wektorów,
które odpowiadają dwóm możliwym stanom. Dowolny wektor stanu da się
przedstawić jako znormalizowaną kombinację wektorów bazowych – fachowo
nazywa się to superpozycją. Wiemy poza tym, że każdy wektor stanu powinien
umożliwić wyznaczenie prawdopodobieństwa uzyskania wyniku „w górę” lub
„w dół” wzdłuż dowolnej z trzech osi współrzędnych, a do tego potrzeba trzech
rzeczywistych parametrów.

Policzmy, ile parametrów można zakodować w wektorze stanu w obydwu
wariantach teorii. W wersji zespolonej dwie składowe dają cztery parametry
rzeczywiste (każda liczba zespolona to dwa parametry), jeden odpada przez
normalizację, więc zostają trzy parametry – dokładnie tyle, ile trzeba. Ale jeśli
wektor ma rzeczywiste składowe, to. . . jesteśmy zgubieni – po uwzględnieniu
normalizacji zostaje tylko jeden parametr rzeczywisty! To za mało. Bez
kombinowania nie da się opisać spinu elektronu tylko za pomocą liczb
rzeczywistych.

Widać wyraźnie, że alternatywna wersja mechaniki kwantowej wykorzystująca
wyłącznie liczby rzeczywiste musi opisywać spoczywający elektron przy
użyciu przestrzeni Hilberta, która ma cztery, a nie dwa, wymiary. W ogólnym
przypadku należy podwoić wymiar przestrzeni związanej z układem. To oznacza
obecność dodatkowych stanów, które z jakiegoś powodu nie są rozróżniane przez
nasze urządzenia pomiarowe. Pomysł może wygląda dziwnie, ale nie można
go odrzucić wyłącznie na podstawie upodobań estetycznych. Szczególnie, że
opierając się na tym pomyśle, dla dowolnego układu składającego się z jednej
cząstki o jednym stopniu swobody da się wymyślić konstrukcję, która daje
identyczne przewidywania jak teoria zespolona. Powtórzmy: jednej cząstki
o jednym stopniu swobody. A co z układami, które nie mają tej własności?

Tu trzeba przywołać kolejny standardowy postulat: jeżeli układ fizyczny
składa się z dwóch podukładów, którym odpowiadają przestrzenie Hilberta
H1 oraz H2, to przestrzeń Hilberta całego układu ma strukturę iloczynuRozważmy dwie pary wektorów:

ϕ1, ψ1 ∈ H1 oraz ϕ2, ψ2 ∈ H2. Wówczas
iloczyn skalarny wektorów ϕ1 ⊗ ϕ2 oraz
ψ1 ⊗ ψ2 ∈ H1 ⊗ H2 jest zdefiniowany jako
⟨ϕ1|ψ1⟩ ⟨ϕ2|ψ2⟩.

tensorowego H1 ⊗ H2. Z grubsza rzecz biorąc, zbiór H1 ⊗ H2 to przestrzeń
wektorowa, której bazę stanowią uporządkowane pary wektorów bazowych
przestrzeni H1 i H2 z odpowiednio zdefiniowanym iloczynem skalarnym. Stąd
wynika, że wymiar przestrzeni całego układu to iloczyn wymiarów przestrzeni
odpowiadających poszczególnym podukładom. Ustaliliśmy już wcześniej, że
przestrzeń wymiaru zespolonego n jest w pewnym sensie równoważna przestrzeni
wymiaru rzeczywistego 2n. Jeżeli więc mamy dwie przestrzenie zespolonych

Przykładowo przestrzeń Hilberta dwóch
spoczywających elektronów ma zespolony
wymiar cztery w konwencjonalnej teorii,
a szesnaście (a nie osiem!) w przypadku
modyfikacji używającej wyłącznie liczb
rzeczywistych. W drugim wypadku
dysponujemy więc zbyt dużą liczbą
parametrów rzeczywistych, w porównaniu
ze standardową zespoloną mechaniką
kwantową.

wymiarów, n i m, to zespolony wymiar ich iloczynu tensorowego jest równy nm,
a odpowiadające im rzeczywiste przestrzenie mają wymiary równe, odpowiednio,
2n, 2m oraz 2nm. Natomiast rzeczywisty wymiar iloczynu dwóch przestrzeni
wymiarów 2n i 2m jest równy 4nm. Widać więc, że jest zasadnicza różnica
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między tensorowym rozmnażaniem przestrzeni nad liczbami zespolonymi
i rzeczywistymi. Pojawia się więc potencjalna możliwość sprawdzenia, który
sposób opisu lepiej pasuje do rzeczywistości doświadczalnej. Grupa Navascuésa
postanowiła wykorzystać pojawiającą się tu rysę, zainspirowana pomysłem,
który pozwolił wcześniej potwierdzić indeterminizm zjawisk kwantowych.

Rozważmy źródło cząstek, w którym zachodzi proces kreacji pary
elektron–pozyton. W przypadku gdy w rozważanym procesie całkowity
moment pędu układu znika, składowe spinu powstałych w procesie cząstek
wzdłuż dowolnego kierunku muszą być przeciwnie skierowane. Obie cząstki
wysyłamy do odległych obserwatorów: elektron w jedną, a pozyton w drugą
stronę. Obserwatorzy dysponują dwoma detektorami mierzącymi rzut spinu
ustawionymi w różnych kierunkach i w każdym powtórzeniu eksperymentu
wybierają losowo, z którego detektora korzystają, wykonując pomiar na
otrzymanej cząstce. Jeśli uzyskają wynik „w górę”, to przypisują mu wartość +1,
a jeśli „w dół”, to −1. Potem wspólnie wyliczają wartość pewnego wyrażenia,
które zależy od rezultatu pomiarów i wybranych kierunków detektorów. Po
wielu powtórzeniach eksperymentu można wyliczyć średnią wartość tego
wyrażenia, którą oznaczymy przez S. W 1964 roku John Bell pokazał, że przy
odpowiednio sprytnym doborze wyrażenia i kierunków detektorów dla teorii
deterministycznych zachodzi zawsze S ⩽ 2, a mechanika kwantowa dopuszcza
nawet S = 2

√
2.Jak wyglądają rachunki dotyczące

nierówności Bella, można przeczytać we
wspomnianych już artykułach w ∆5

01 oraz
w ∆2

21.
Może więc dałoby się tak dobrać wspomniane wyrażenie i kierunki detektorów,
żeby S była ograniczona dla „rzeczywistej” modyfikacji mechaniki kwantowej,
a dla konwencjonalnej teorii mogła osiągać większe wartości? Okazuje się, że
w opisanym scenariuszu nie jest to możliwe. Wystarczy jednak wprowadzić
kilka drobnych ulepszeń: dodać jedno źródło i jednego obserwatora (wtedy jeden
obserwator otrzymuje dwie cząstki, na których wykonuje jednoczesny pomiar)
oraz zwiększyć liczbę detektorów w dyspozycji obserwatorów. W tej konfiguracji
można znaleźć takie wyrażenie i kierunki, że dla dowolnej modyfikacji teorii,
która używa wyłącznie liczb rzeczywistych oraz spełnia opisane wyżej postulaty,
zachodzi S < 7,66. Standardowa teoria dopuszcza zaś S = 6

√
2 ≈ 8,48.

Wykonano już dwa eksperymenty, których wyniki wskazują na słuszność
standardowej wersji mechaniki kwantowej – w obydwu przypadkach
nierówność obowiązująca dla teorii opartych na liczbach rzeczywistych została
złamana [3, 4]. Nie jest to ostateczny werdykt, ale bardzo silna przesłanka.
Zamiast popadać w samozadowolenie, zastanówmy się jednak, jakie wnioski
można z tego wszystkiego wyciągnąć. Z dużym prawdopodobieństwem należy
odrzucić możliwość, że formalizm mechaniki kwantowej da się oprzeć wyłącznie
na liczbach rzeczywistych, jeśli ma spełniać wspomniane wyżej standardowe
postulaty. Może jednak dałoby się odrzucić jedno z krępujących założeń?
Najmniej kontrowersyjnym kandydatem wydaje się ostatni postulat, ten
dotyczący iloczynu tensorowego. W zamian należałoby wtedy zaproponować
inny przepis na modelowanie złożonych układów.

W istocie da się to zrobić, wystarczy tylko użyć pomysłowego sposobu zapisu
jednostek rzeczywistej i urojonej:

1 ≡
(

1 0
0 1

)
, i ≡

(
0 −1
1 0

)
.

Łatwo sprawdzić, że powyższe macierze zachowują się dokładnie tak, jak
powinny. Przy odrobinie sprytu da się na tej podstawie zbudować rzeczywistą
teorię, która nie przestrzega postulatu iloczynu tensorowego i daje identyczne
przewidywania jak zespolona wersja – wystarczy w odpowiedni sposób zastąpić
wszystkie liczby zespolone macierzami [5]. Czy jednak nie jest to po prostu
„zakamuflowane” użycie liczb zespolonych? Można powiedzieć, że tak. Spójrzmy
na to z innej strony. Ten pozorny kamuflaż pokazuje, że liczby zespolone wcale
nie są tak odległe od rzeczywistości, jak mogłoby się wydawać. Tak jak niegdyś
w przypadku liczb niewymiernych czy ujemnych, zdrowy rozsądek znów okazuje
się niezbyt dobrym doradcą w sprawach zmatematyzowanego opisu świata.
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