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Jacob Eli Goodman (pod pseudonimem Harry Dweighter) w roku 1975 zamieścił
w The American Mathematical Monthly następujący problem: „Nasz szef kuchni
jest niechlujny, i gdy przygotowuje stos naleśników, wychodzą one wszystkie
różnej wielkości. Dlatego, gdy niosę je klientowi, w drodze do stolika porządkujęWarto przy okazji wspomnieć, że 2 lutego

obchodzimy Dzień Naleśnika, zaś w tym
roku 12 lutego wypada Tłusty Czwartek.
Smacznego!

je (aby najmniejszy znalazł się na górze i kolejno aż do największego na spodzie)
chwytając kilka z góry i odwracając je, powtarzając tę czynność (zmieniając
liczbę odwracanych [naleśników]) tyle razy, ile jest to konieczne. Jeśli jest
n naleśników, jaka jest maksymalna liczba odwróceń (jako funkcja n), które
będę musiał wykonać, aby je uporządkować?”

Funkcję, o której mowa powyżej, oznaczamy f(n). Stos naleśników
reprezentujemy jako permutację liczb od 1, która reprezentuje najmniejszy
naleśnik, do n, która reprezentuje największy naleśnik, gdzie n ⩾ 2.
Porządkowanie naleśników odpowiada sortowaniu rosnąco elementów permutacji
przez odwracanie kolejności elementów w jej prefiksach, dlatego problem pojawia
się w literaturze również pod nazwą sorting by prefix reversal. Sortowanie
permutacji (4, 6, 2, 5, 1, 3) może wyglądać na przykład tak (liczba nad strzałką
oznacza długość odwracanego prefiksu):

(4, 6, 2, 5, 1, 3) 3−→ (2, 6, 4, 5, 1, 3) 4−→ (5, 4, 6, 2, 1, 3)
2−→ (4, 5, 6, 2, 1, 3) 5−→ (1, 2, 6, 5, 4, 3)
6−→ (3, 4, 5, 6, 2, 1) 4−→ (6, 5, 4, 3, 2, 1) 6−→ (1, 2, 3, 4, 5, 6).

Aby posortować dowolną permutację, rozważamy kolejno elementy
t = n, n − 1, . . . , 3, zachowując niezmiennik, że elementy większe od t są już na
właściwych pozycjach. Jeśli t nie jest na pozycji t ani na początku permutacji,
to jest na pozycji od 2 do t − 1 i odwracamy tyle elementów, aby element t
znalazł się na początku permutacji. Jeśli t jest już na początku permutacji, to
odwracamy t elementów, co umieszcza t na pozycji t. W ten sposób za pomocą
co najwyżej 2(n − 2) odwróceń umieszczamy na docelowych pozycjach elementy
od 3 do n. Jeśli po tym elementy 1 i 2 nie są we właściwej kolejności, to za
pomocą jednego odwrócenia ustawiamy je w takiej kolejności. Powyższy
algorytm pokazuje, że f(n) ⩽ 2n − 3 dla n ⩾ 2.E. Győri, G. Turán, Stack of pancakes

(1978).
W.H. Gates, Ch.H. Papadimitriou,

Bounds for sorting by prefix reversal
(1979).

Przedstawimy teraz lepszy algorytm. Wymyślili go Ervin Győri i György
Turán oraz niezależnie od nich William Henry Gates III (bardziej znany jako
Bill Gates) i Christos Harilaos Papadimitriou. Równolegle z opisem samego
algorytmu będziemy analizować jego złożoność, a w tym celu potrzebujemy
wprowadzić pewne definicje. Dwa elementy na sąsiednich pozycjach permutacji
tworzą dobre sąsiedztwo, jeśli ich wartości różnią się o 1. Przyjmujemy ponadto,
że dobre sąsiedztwo tworzą też elementy 1 i n. Maksymalny podciąg elementów
(co najmniej dwóch) tworzących dobre sąsiedztwa nazywamy blokiem. Element
nienależący do żadnego bloku nazywamy wolnym. Przykładowo w permutacji
(3, 5, 4, 7, 1, 2, 6) mamy dobre sąsiedztwa (5, 4), (7, 1) i (1, 2), bloki (5, 4) i (7, 1, 2)
oraz elementy wolne 3 i 6. Dodawanie liczby całkowitej do elementu permutacji
lub odejmowanie liczby całkowitej od elementu permutacji wykonujemy
cyklicznie: n + 1 = 1, n + 2 = 2, 1 − 1 = n, 1 − 2 = n − 1 itd. Przyjmujemy,
że po wykonaniu ℓ odwróceń potencjał uzyskanej permutacji jest równy
Φℓ = ℓ + αw + βb, gdzie w jest liczbą elementów wolnych w tej permutacji,
b jest liczbą bloków w tej permutacji, a α i β są pewnymi stałymi, których
wartości wyznaczymy później. Przez ∆Φ oznaczamy zmianę potencjału
w sekwencji odwróceń. Wielokropkiem zastępujemy podciąg elementów
permutacji nietworzący dobrych sąsiedztw z elementami go poprzedzającym
i następującym po nim. Wielokropek może też oznaczać podciąg pusty.
Podkreśleniem zastępujemy podciąg bloku, być może pusty. Niech d ∈ {−1, 1}.
Zależnie od postaci permutacji rozpatrujemy następujące przypadki, za każdym
razem przedstawiając również odwrócenia, jakich należy wówczas dokonać.
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1. Permutacja zaczyna się elementem wolnym t.
(a) Istnieje element wolny t + d:

(t, . . . , t + d, . . . ) → (. . . , t, t + d, . . . ).

Jedno odwrócenie zamienia dwa elementy wolne
w jeden blok, czyli ∆Φ = 1 − 2α + β.

(b) Istnieje blok zaczynający się elementem t + d:

(t, . . . , t + d, , . . . ) → (. . . , t, t + d, , . . . ).

Jedno odwrócenie zmniejsza o jeden liczbę
elementów wolnych, czyli ∆Φ = 1 − α.

(c) Istnieją bloki kończące się elementami t + d
i t − d:

(t, . . . , , t + d, . . . , , t − d, . . . )
→ (t + d, , . . . , t, . . . , , t − d, . . . )
→ (. . . , , t + d, t, . . . , , t − d, . . . )
→ (t − d, , . . . , t, t + d, , . . . )
→ (. . . , , t − d, t, t + d, , . . . ).

Cztery odwrócenia zmniejszają o jeden
liczby elementów wolnych i bloków, czyli
∆Φ = 4 − α − β.

2. Permutacja zaczyna się blokiem o długości k, gdzie
1 < k < n − 1. Pierwszym elementem bloku jest t,
a ostatnim t + (k − 1)d.
(a) Istnieje element wolny t − d:

(t, , t + (k − 1)d, . . . , t − d, . . . )
→ (. . . , t + (k − 1)d, , t, t − d, . . . ).

Jedno odwrócenie zmniejsza o jeden liczbę
elementów wolnych, czyli ∆Φ = 1 − α.

(b) Istnieje blok zaczynający się elementem t − d:

(t, , t + (k − 1)d, . . . , t − d, , . . . )
→ (. . . , t + (k − 1)d, , t, t − d, , . . . ).

Jedno odwrócenie zmniejsza o jeden liczbę
bloków, czyli ∆Φ = 1 − β.

(c) Istnieją blok kończący się elementem t − d
i element wolny t + kd. Zależnie od ich
wzajemnego położenia stosujemy odwrócenia

(t, , t + (k − 1)d, . . . , , t − d, . . . , t + kd, . . . )
→ (t + kd, . . . , t − d, , . . . , t + (k − 1)d, , t, . . . )
→ (. . . , , t − d, . . . , t + kd, t + (k − 1)d, , t, . . . )
→ (t, , t + (k − 1)d, t + kd, . . . , t − d, , . . . )
→ (. . . , t + kd, t + (k − 1)d, , t, t − d, , . . . )

lub

(t, , t + (k − 1)d, . . . , t + kd, . . . , , t − d, . . . )
→ (t + kd, . . . , t + (k − 1)d, , t, . . . , , t − d, . . . )
→ (. . . , t + kd, t + (k − 1)d, , t, . . . , , t − d, . . . )
→ (t − d, , . . . , t, , t + (k − 1)d, t + kd, . . . )
→ (. . . , , t − d, t, , t + (k − 1)d, t + kd, . . . ).
Cztery odwrócenia zmniejszają o jeden
liczby elementów wolnych i bloków, czyli
∆Φ = 4 − α − β.

(d) Istnieje blok, którego pierwszym elementem jest
t + kd:

(t, , t + (k − 1)d, . . . , t + kd, , . . . )
→ (t + (k − 1)d, , t, . . . , t + kd, , . . . )
→ (. . . , t, , t + (k − 1)d, t + kd, , . . . ).

Istnieje blok, którego ostatnim elementem jest
t + kd:

(t, , t + (k − 1)d, . . . , , t + kd, . . . )
→ (t + kd, , . . . , t + (k − 1)d, , t, . . . )
→ (. . . , , t + kd, t + (k − 1)d, , t, . . . ).

Dwa odwrócenia zmniejszają o jeden liczbę
bloków, czyli ∆Φ = 2 − β.

3. Jeśli permutacja nie pasuje do żadnego z powyższych
przypadków, to jest blokiem. Jeśli nie jest to
permutacja (1, , n), to zależnie od jej postaci mamy
następujące przypadki:
(a) (n, , 1) n−→ (1, , n),
(b) (n − 1, , 1, n) n−1−−−→ (1, , n) dla n ⩾ 3,
(c) (n, 1, , n − 1) n−→ (n − 1, , 1, n) n−1−−−→ (1, , n)

dla n ⩾ 3,
(d) (2, , n, 1) n−1−−−→ (n, , 1) n−→ (1, , n) dla n ⩾ 3,
(e) (1, n, , 2) n−→ (2, , n, 1) dla n ⩾ 3 i dalej jak

w punkcie 3.d,
(f) (t + 1, , n, 1, , t) n−t−−→ (n, , t + 1, 1, , t) n−→

(t, , 1, t + 1, , n) t−→ (1, , n) dla 2 ⩽ t ⩽
n − 2,

(g) (t, , 1, n, , t + 1) n−→ (t + 1, , n, 1, , t) dla
2 ⩽ t ⩽ n − 2 i dalej jak w punkcie 3.f.

Będziemy wymagać, aby po odwróceniach z punktów 1
i 2 potencjał permutacji nie zwiększał się, czyli ∆Φ ⩽ 0,
więc muszą być spełnione nierówności:

(6)
α ⩾ 1,

α + β ⩾ 4,

2 ⩽ β ⩽ 2α − 1.

Potencjał Φ0 początkowej permutacji wynosi αw + βb. Ponieważ każdy blok
zawiera co najmniej dwa elementy, więc w ⩽ n − 2b, czyli Φ0 ⩽ αn + (β − 2α)b.
Korzystając z ostatniej nierówności w (6), dostajemy Φ0 ⩽ αn − b ⩽ αn. Równość
Φ0 = αn zachodzi, gdy permutacja ma n elementów wolnych. Każda sekwencja
odwróceń z punktów 1 i 2 zmniejsza liczbę elementów wolnych lub bloków, więc
po skończonej liczbie m odwróceń dochodzimy do punktu 3. Wtedy Φm = m + β.
W punkcie 3, aby dokończyć sortowanie, wykonujemy co najwyżej cztery
odwrócenia, zatem f(n) ⩽ m + 4 = Φm − β + 4. Ponieważ założyliśmy, że potencjał
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permutacji nie rośnie, więc Φm ⩽ Φ0 i stąd f(n) ⩽ αn − β + 4. Pozostaje znaleźć
rozwiązanie układu nierówności (6) minimalizujące wartość α. Jest to przykład
zagadnienia programowania liniowego. Dla dwóch niewiadomych możemy je
rozwiązać, stosując interpretację geometryczną, patrz rysunek na marginesie.
Otrzymujemy α = 5

3 i β = 7
3 . Zatem f(n) ⩽ 5(n + 1)/3.

α

β

β = 2

β = 2α − 1

1 5
3

2 3

2

7
3

3

α + β = 4
Nieco lepsze górne oszacowanie f(n) ⩽ (18/11)n + O(1) udowodnił Bhadrachalam
Chitturi ze współpracownikami. Ich dowód wymaga jednak rozpatrzenia 2220

B. Chitturi et al., An (18/11)n upper
bound for sorting by prefix reversals
(2009).

przypadków. Znamy dokładnie wartości f(n) dla n ⩽ 19, patrz tabela niżej (jest
to ciąg o numerze A058986 w The On-Line Encyclopedia of Integer Sequences).

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
f(n) 1 3 4 5 7 8 9 10 11 13 14 15 16 17 18 19 20 22

W mojej pracy Note on pancake sorting, opublikowanej w czasopiśmie
Information Processing Letters, zajmowałem się oszacowaniami
dolnymi. Skonstruowałem dla większych n permutacje świadczące, że
f(n) ⩾ ⌊(15n + 9)/14⌋.

Na koniec zauważmy, że w całym artykule milcząco zakładaliśmy, że strony
naleśnika są nierozróżnialne. Każdy, kto smażył naleśniki, wie jednak, że zwykle
jedna strona wychodzi bardziej przysmażona. Rozważa się więc wersję problemu
sortowania naleśników tak, aby wszystkie były zwrócone przysmażoną stroną
w dół, ale o tym innym razem.

Genetyka w czwartym wymiarze
Dziś będzie o nukleomie. Wiem, sprawa jest niewesoła. Kiedy zacznie się
mówić o genetyce, zasób potrzebnych słów może zniechęcić nawet najbardziej
wytrwałych słuchaczy. Nazwy cząsteczek (np. DNA, RNA) i konkretnych
struktur komórkowych (np. nukleosom, chromosom, jądro komórkowe) plączą
się ze słowami określającymi pojęcia abstrakcyjne mówiące o funkcji (gen, kod
genetyczny, transkrypcja, translacja). Czas pędzi, a lista pojęć się wydłuża. Jak
za tym nadążyć?

Kiedy zaczęłam uczyć się o DNA, na czarnej tablicy rysowano nam geny. Długa
cienka kreska, na niej zaznaczone pudełeczko podpisane jakimś skrótem (np.
DIN7 ) oraz (czasami) dodane jeszcze dwa dużo mniejsze, z przodu i z tyłu.
Gdzieś na długiej nici DNA organizmu X znajduje się kawałek, nazwany genem
DIN7, który ma element rozpoznawany przez białka odczytujące informację
genetyczną (promotor) i miejsce, gdzie odczyt się kończy (terminator). Schludne
to i proste. Ale. . .

Przychodzi mi na myśl inny obraz: jądro komórkowe jako wielka plątanina
cienkich nitek, chaos, bałagan, DNA jak rozwinięte motki włóczek upchane
kolanem w szafce z materiałami do szydełkowania. I informacja, że gdyby te
wszystkie nitki DNA wyciągnąć z ludzkiej komórki, rozplątać i położyć jedna za
drugą, to mierzyłoby to wszystko 2 metry! DWA METRY!?

Pierwszy odczyt sekwencji ludzkiego genomu sprawę dodatkowo zagmatwał.
Wbrew oczekiwaniom – genów ludzkich jest jedynie około 30 tysięcy. Zaledwie
2% ludzkiego DNA koduje białka, a olbrzymia jego część to (wtedy tak
nazywany) „śmieciowy DNA”.

Aż nadszedł czas, kiedy ludzie zaczęli grzebać w tych „śmieciach”. I trzeba było
stworzyć dużo nowych pojęć. A gdzie nukleom?

W 2017 roku konsorcjum kilkunastu instytutów badawczych z USA oraz
kilku organizacji z reszty świata rozpoczęło projekt o nazwie „Nucleome 4D”.
Przedsięwzięcie potężne, bo wymagało nie tylko zebrania i analizy olbrzymiej
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