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Warto przy okazji wspomniedé, ze 2 lutego
obchodzimy Dzieri Nalesnika, zas w tym
roku 12 lutego wypada Tlusty Czwartek.
Smacznego!

E. Gyé6ri, G. Turan, Stack of pancakes
(1978).

W.H. Gates, Ch.H. Papadimitriou,
Bounds for sorting by prefiz reversal
(1979).

Sortowanie nalesnikow
Marcin PECZARSKI*

Jacob Eli Goodman (pod pseudonimem Harry Dweighter) w roku 1975 zamiescil
w The American Mathematical Monthly nastepujacy problem: ,,Nasz szef kuchni
jest niechlujny, i gdy przygotowuje stos naleénikéw, wychodza one wszystkie
réznej wielkosci. Dlatego, gdy niose je klientowi, w drodze do stolika porzadkuje
je (aby najmniejszy znalazl sie na gérze i kolejno az do najwiekszego na spodzie)
chwytajac kilka z gory i odwracajac je, powtarzajac te czynno$é (zmieniajac
liczbe odwracanych [nale$nikéw]) tyle razy, ile jest to konieczne. Jesli jest

n nalesnikéw, jaka jest maksymalna liczba odwrécen (jako funkcja n), ktére
bede musial wykonaé, aby je uporzadkowac¢?”

Funkcje, o ktérej mowa powyzej, oznaczamy f(n). Stos nale$nikéw
reprezentujemy jako permutacje liczb od 1, ktéra reprezentuje najmniejszy
nales$nik, do n, ktéra reprezentuje najwigkszy naleénik, gdzie n > 2.
Porzadkowanie naleénikow odpowiada sortowaniu rosnaco elementéw permutacji
przez odwracanie kolejnosci elementéw w jej prefiksach, dlatego problem pojawia
sie w literaturze réwniez pod nazwa sorting by prefiz reversal. Sortowanie
permutacji (4, 6,2,5,1,3) moze wygladaé¢ na przyklad tak (liczba nad strzatka
oznacza dlugo$é odwracanego prefiksu):

(4,6,2,5,1,3) % (2,6,4,5,1,3) % (5,4,6,2,1,3)
2 (4,5,6,2,1,3) > (1,2,6,5,4,3)
5 (3,4,5,6,2,1) > (6,5,4,3,2,1) > (1,2,3,4,5,6).

Aby posortowaé¢ dowolng permutacje, rozwazamy kolejno elementy
t=n,n—1,...,3, zachowujac niezmiennik, ze elementy wigksze od t sa juz na
wlasciwych pozycjach. Jedli ¢ nie jest na pozycji t ani na poczatku permutacji,
to jest na pozycji od 2 do t — 1 i odwracamy tyle elementéw, aby element ¢
znalazl si¢ na poczatku permutacji. Jedli ¢ jest juz na poczatku permutacji, to
odwracamy t elementéw, co umieszcza t na pozycji t. W ten sposéb za pomoca
co najwyzej 2(n — 2) odwrdcenn umieszczamy na docelowych pozycjach elementy
od 3 do n. Jesli po tym elementy 1 i 2 nie sa we wtasciwej kolejnosci, to za
pomoca jednego odwrdcenia ustawiamy je w takiej kolejnosci. Powyzszy
algorytm pokazuje, ze f(n) < 2n—3 dlan > 2.

Przedstawimy teraz lepszy algorytm. Wymyslili go Ervin Gy6ri i Gyorgy

Turdn oraz niezaleznie od nich William Henry Gates III (bardziej znany jako
Bill Gates) i Christos Harilaos Papadimitriou. Réwnolegle z opisem samego
algorytmu bedziemy analizowac¢ jego ztozonosé, a w tym celu potrzebujemy
wprowadzi¢ pewne definicje. Dwa elementy na sasiednich pozycjach permutacji
tworza dobre sgsiedztwo, jesli ich wartosci réznig sie o 1. Przyjmujemy ponadto,
ze dobre sasiedztwo tworza tez elementy 1 i n. Maksymalny podciag elementow
(co najmniej dwoch) tworzacych dobre sasiedztwa nazywamy blokiemn. Element
nienalezacy do zadnego bloku nazywamy wolnym. Przykladowo w permutacji
(3,5,4,7,1,2,6) mamy dobre sasiedztwa (5,4), (7,1) i (1,2), bloki (5,4) i (7,1,2)
oraz elementy wolne 3 i 6. Dodawanie liczby catkowitej do elementu permutacji
lub odejmowanie liczby catkowitej od elementu permutacji wykonujemy
cyklicznie: n4+1=1,n+2=2,1—-1=mn,1—-2=n— 1 itd. Przyjmujemy,

ze po wykonaniu £ odwrécen potencjal uzyskanej permutacji jest rowny

&y =1+ aw + Bb, gdzie w jest liczba elementéw wolnych w tej permutacji,

b jest liczba blokéow w tej permutacji, a « i 8 sa pewnymi stalymi, ktorych
wartosci wyznaczymy pézniej. Przez A® oznaczamy zmiane potencjatu

w sekwencji odwrécen. Wielokropkiem zastepujemy podciag elementow
permutacji nietworzacy dobrych sasiedztw z elementami go poprzedzajacym

i nastepujacym po nim. Wielokropek moze tez oznaczaé podciag pusty.
Podkresleniem zastepujemy podciag bloku, byé¢ moze pusty. Niech d € {—1,1}.
Zaleznie od postaci permutacji rozpatrujemy nastepujace przypadki, za kazdym
razem przedstawiajac réwniez odwrécenia, jakich nalezy wowczas dokonad.
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1. Permutacja zaczyna si¢ elementem wolnym ¢. lub

(a)

1 < k <n—1. Pierwszym elementem bloku jest ¢,
a ostatnim ¢t + (k — 1)d.

(a)

Istnieje element wolny ¢ + d: (t,__t+(k—1d,....t+kd,...,__t—d,...)

(..., t+d,...) = (.., tt+d,...). = (t+kd,...,t+k—-1d,__,t,...,__,t—d,...
Jedno odwrécenie zamienia dwa elementy wolne = (. ttkdt+(k=1d,__t,..., ,t—d,...
w jeden blok, czyli A® =1 —2a + 3. —{t—-d,__,...t,_ t+(k—1)d,t+kd,...)

Istnieje blok zaczynajacy sie elementem t + d: = (e, t—dt,__t+(k—1d,t+kd,...).
Cztery odwrécenia zmniejszaja o jeden

(t,...,t+d,__,...)=> (.. t,t+d,__,...).
.. .. . ) liczby elementéw wolnych i blokéw, czyli
Jedno odwrécenie zmniejsza o jeden liczbe AD=4—a-—8

1 t6 Inych LA®P=1-a.
clementow wo'nyeh, czyt @ (d) Istnieje blok, ktérego pierwszym elementem jest

(c) Istnieja bloki koriczace sie elementami ¢t 4 d t+ kd:

it—d:

(t,__t+(k—1d,....,t+kd,__,...)

(toy ttd,_t—d,...) =+ k-Dd,__,t,...;t+kd,__,...)
= (t+d, ot it —d,.) = (oyt,_t+(k=1)d,t+kd,__,...).
= (o ttdt,._t—d,...) Istnieje blok, ktérego ostatnim elementem jest
= {t—d,__,...t,t+d,__,...) t+ kd:
= (e, _t—ditit+d,__,...). (t,_ t+(k—1)d,..., . t+kd...)

Cztery odwrdcenia zmniejszaja o jeden = (t+kd,__,...,t+(k-1d,__,t,...)

liczby elementéw wolnych i blokéw, czyli L o

’ = (... t+kd,t+ (k—1)d t,...).

A(I):4—Ol—ﬂ ( y— + ) +( )7777 )

Dwa odwrdécenia zmniejszaja o jeden liczbe
. Permutacja zaczyna sie blokiem o dlugosci k, gdzie blokéw, czyli A® =2 — .

3. Jesli permutacja nie pasuje do zadnego z powyzszych
. g 5 . )
przypadkéw, to jest blokiem. Jesli nie j(s‘ to
Istnieje element wolny ¢ — d: permutacja (1,___,n), to zaleznie od jej postaci mamy

(4 ot (h=1)d,.. t—d,...) nastepujace pl"xy])a(lk :

(a) (n777 1) l> (]‘777 n)?
S t+(k=1d,__ tt—d,...). —
(b) (n—1,__,1,n) == (1,__,n)dlan>3

Jedno odwrocenie zmniejsza o jeden liczbe " o1
elementéw wolnych, czyli A® =1 — a. (c) gf’ 1*;?3” )= @m-1_,1n) (1,_n)
Istnieje blok zaczynajacy sie elementem t — d: anzo el n

d (2,_,n1)—(n,_,1)—=(1,__,n)dlan>3,
t, _t+(k=1d,...;t=d,__,...) (e) (1,n,_,2) % (2,__,n,1)dlan>3idalejjak

= (., t+k-1d,__ t,t—d,__,...). w punkcie [3.d

Jedno odwrécenie zmniejsza o jeden liczbe B (t+1,_n1,_ )25 (0, t+1,1,__ )5
blokéw, czyli A® =1 — 8. (¢, 1,t+1,_ _.n)5 1, n)da2<t<
Istnieja blok konczacy sie elementem t — d n—2,
i element wolny t + kd. Zaleznie od ich (g) (t,__,1n,_ t+1) 5 (t+1,_ ,n 1, t)dla
wzajemnego polozenia stosujemy odwrdcenia 2 <t<n—21idalej jak w punkme
t,__,t+ (k- 1)d ceey_yt—d, .t kd, ) Bedziemy wymagacé, aby po odwréceniach z punktow 1

i 2 potencjal permutacji nie zwiekszal sie, czyli A® < 0,

— (t+kd,. —d,__ +k-1)d,__t...) wiec musza byé spelnione nieréwnoéci:
= (.. t—d t+kdt—|—(k d,__t,...) a>1
—>(t, t+(k:—1)d,t+kd,..., —d,__,...) (6) atB>4

— (o tt+kdt+ (k—1)d,__ tt—d,__,...) 2<B< 20— 1.

Potencjal @ poczatkowej permutacji wynosi aw + $b. Poniewaz kazdy blok

zawiera co najmniej dwa elementy, wiec w < n — 2b, czyli @9 < an + (8 — 2a)b.
Korzystajac z ostatniej nieréwnosci w @, dostajemy ¢ < an —b < an. Rownosé
®y = an zachodzi, gdy permutacja ma n elementéw wolnych. Kazda sekwencja
odwrécen z punktéw 1 i 2 zmniejsza liczbe elementéw wolnych lub blokéw, wiec

po skoriczonej liczbie m odwrécen dochodzimy do punktu 3. Wtedy @, = m + 3.

W punkcie 3, aby dokoniczy¢ sortowanie, wykonujemy co najwyzej cztery
odwrécenia, zatem f(n) < m+4=®,, — 8+ 4. Poniewaz zalozylidmy, ze potencjal
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B. Chitturi et al., An (18/11)n upper
bound for sorting by prefix reversals
(2009).

permutacji nie rosnie, wiec P, < ®g i stad f(n) < an — 8 + 4. Pozostaje znalezé
rozwiazanie uktadu nieréwnosci @ minimalizujace warto$¢ a. Jest to przyklad
zagadnienia programowania liniowego. Dla dwdch niewiadomych mozemy je
rozwiazaé, stosujac interpretacje geometryczna, patrz rysunek na marginesie.
Otrzymujemy o = 2 i = Z. Zatem f(n) < 5(n+1)/3.

Nieco lepsze gérne oszacowanie f(n) < (18/11)n + O(1) udowodnil Bhadrachalam
Chitturi ze wspotpracownikami. Ich dowéd wymaga jednak rozpatrzenia 2220
przypadkéw. Znamy dokladnie wartosci f(n) dla n < 19, patrz tabela nizej (jest
to ciag o numerze A058986| w The On-Line Encyclopedia of Integer Sequences).

n |2[3]45|/6|7|8]9 (1011|1213 |14|15|16 |17 |18 19
fn)|1(3|4]5|7[8|9|10|11|13|14|15]16|17 |18 19|20 |22

W mojej pracy Note on pancake sorting, opublikowanej w czasopidmie
Information Processing Letters, zajmowalem sie oszacowaniami
dolnymi. Skonstruowalem dla wigkszych n permutacje swiadczace, ze
fn) = |(15n+9)/14].

Na koniec zauwazmy, ze w calym artykule milczaco zakladaliSmy, ze strony
nalesnika sg nierozréznialne. Kazdy, kto smazyt naleéniki, wie jednak, ze zwykle
jedna strona wychodzi bardziej przysmazona. Rozwaza sie wiec wersje problemu
sortowania nalesnikow tak, aby wszystkie byly zwrdcone przysmazong strona

w dol, ale o tym innym razem.

Genetyka w czwartym wymiarze

Dzi$ bedzie o nukleomie. Wiem, sprawa jest niewesota. Kiedy zacznie sig
mowi¢ o genetyce, zaséb potrzebnych sléw moze zniecheci¢ nawet najbardziej
wytrwalych stuchaczy. Nazwy czasteczek (np. DNA, RNA) i konkretnych
struktur komérkowych (np. nukleosom, chromosom, jadro komérkowe) placza
sie ze stowami okreslajacymi pojecia abstrakcyjne méwiace o funkeji (gen, kod
genetyczny, transkrypcja, translacja). Czas pedzi, a lista pojeé si¢ wydluza. Jak
za tym nadazyc¢?

Kiedy zaczetam uczy¢ sie o DNA, na czarnej tablicy rysowano nam geny. Dluga
cienka kreska, na niej zaznaczone pudeleczko podpisane jakim$ skrétem (np.
DIN7) oraz (czasami) dodane jeszcze dwa duzo mniejsze, z przodu i z tytu.
Gdzies na dlugiej nici DNA organizmu X znajduje sie kawatek, nazwany genem
DIN7, ktéry ma element rozpoznawany przez bialka odczytujace informacje
genetyczna (promotor) i miejsce, gdzie odczyt sie koniczy (terminator). Schludne
to i proste. Ale. ..

Przychodzi mi na mys$l inny obraz: jadro komoérkowe jako wielka platanina
cienkich nitek, chaos, batagan, DNA jak rozwiniete motki wiéczek upchane
kolanem w szafce z materialami do szydetkowania. I informacja, ze gdyby te
wszystkie nitki DNA wyciagnaé z ludzkiej komorki, rozplataé i potozy¢ jedna za
druga, to mierzyloby to wszystko 2 metry! DWA METRY!?

Pierwszy odczyt sekwencji ludzkiego genomu sprawe dodatkowo zagmatwal.
Whbrew oczekiwaniom — gendéw ludzkich jest jedynie okoto 30 tysiecy. Zaledwie
2% ludzkiego DNA koduje biatka, a olbrzymia jego czes$¢ to (wtedy tak
nazywany) ,S$mieciowy DNA”.

A7 nadszed! czas, kiedy ludzie zaczeli grzebaé w tych ,,$mieciach”. I trzeba bylo
stworzy¢ duzo nowych pojeé. A gdzie nukleom?

W 2017 roku konsorcjum kilkunastu instytutow badawczych z USA oraz
kilku organizacji z reszty $wiata rozpoczeto projekt o nazwie ,,Nucleome 4D”.
Przedsiewzigcie potezne, bo wymagato nie tylko zebrania i analizy olbrzymiej
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https://oeis.org/A058986

