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Maxwell, Szilárd, Landauer, Bennett i ich demon
Krzysztof BYCZUK** Instytut Fizyki Teoretycznej, Wydział

Fizyki Uniwersytetu Warszawskiego
Spontaniczny przepływ ciepła zachodzi od ciała o wyższej temperaturze do
ciała o niższej temperaturze. Jest to jedno ze sformułowań drugiej zasady
termodynamiki według Clausiusa. Nie można uzyskać pracy w procesie
cyklicznym, pobierając energię jedynie z jednego rezerwuaru. Jest to
sformułowanie tej samej zasady termodynamiki, ale według Kelvina. Oba
sformułowania są równoważne, patrz ∆3

20. Można je też zapisać matematycznie:
Istnieje funkcja stanu S zwana entropią, patrz ∆4

19, która w układzie
izolowanym, w którym zachodzi proces termodynamiczny, nigdy nie maleje:
∆S ⩾ 0. Gdy zachodzi równość, to taki proces, z definicji, nazywamy
odwracalnym.

Pozorna sprzeczność drugiej zasady termodynamiki z odwracalnymi w czasie
prawami dynamiki Newtona w mechanice klasycznej pobudzała wyobraźnię
uczonych, patrz ∆1

19. Już w 1867 roku James Maxwell zaproponował
eksperyment myślowy mający obalić bezwzględną słuszność drugiej zasady
termodynamiki. Rozwiązanie tego paradoksu zajęło 115 lat, a temat ten jest
nadal żywy i interesujący. Doczekał się też weryfikacji doświadczalnej.

MaxwellJames Clerk Maxwell (1831–1879) –
szkocki fizyk i matematyk, laureat
Medalu Rumforda (1860). W eksperymencie myślowym James Maxwell zaproponował, aby podzielić

przegrodą na dwie części pudło z gazem znajdującym się w równowadze
termodynamicznej. Temperatury gazu w obu połówkach są identyczne, średnia,
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Rys. 1. Schemat ilustrujący działanie
demona Maxwella. Przegroda otwiera się
tak, aby przepuścić szybkie cząstki lecące
z prawego pudła do lewego i wolne cząstki
lecące z lewego pudła do prawego. Po
upływie pewnego czasu temperatury
w obu pudłach będą różne. Lewe pudło
będzie miało wyższą temperaturę,
a prawe niższą.

energia kinetyczna cząsteczek również. Oznacza to jednocześnie, że w obu
połówkach są cząsteczki zarówno szybsze, jak i wolniejsze. Maxwell wprowadził
niewielki otwór w przegrodzie, otwieranie i zamykanie którego nie wymaga
pracy. I na koniec wprowadził super-stworka, który ma mierzyć prędkości
cząsteczek, i jeśli cząsteczka lecąca w stronę otworu z prawej strony ma prędkość
większą od średniej prędkości, otwiera przegrodę i pozwala jej polecieć na lewą
stronę. Odwrotnie, z lewej strony przepuszcza na prawo jedynie te cząsteczki,
których prędkości są mniejsze od średniej. W efekcie po upływie pewnego
czasu lewa strona ma więcej szybszych cząsteczek niż prawa i jej temperatura
jest wyższa niż temperatura prawej strony. Teraz wystarczy podłączyć silnik
cieplny pomiędzy tak stworzonymi rezerwuarami i uzyskać pracę. Powstało
perpetuum mobile drugiego rodzaju. Oczywiście jest to sprzeczne z drugą zasadą
termodynamiki w sformułowaniu Clausiusa. Ciepło nie może przepływać bez
początkowej różnicy temperatur. Parę lat później, w 1874 roku, Kelvin nazwał
tego wyimaginowanego stworka demonem Maxwella. Choć w literaturze demonDemon (stgr. δαιµων, daimon,

nadprzyrodzona potęga, dola; łac.
daemon) – istota występująca w wielu
wierzeniach ludowych, mitologiach
i religiach, która zajmuje pozycję
pośrednią między bogami a ludźmi,
między sferą ziemsko-ludzką, materialną
a sferą boską, czysto duchową; istota
o cechach na wpół ludzkich, na wpół
boskich; najczęściej nieprzyjazny
człowiekowi duch, związany pierwotnie
z pojęciem nieczystości sakralnej.
(Wikipedia)

Maxwella był przedstawiany jako ktoś obdarzony inteligencją, to w istocie jest to
odpowiednio zaprojektowane urządzenie pomiarowe.

Szilárd

Mimo gorących dyskusji żaden postęp w zrozumieniu problemu (paradoksu)
demona Maxwella nie nastąpił – aż do 1929 roku. Wtedy to Leó Szilárd (czytaj

Leó Szilárd (1898–1964) –
węgiersko-amerykański fizyk i biolog
molekularny.

Silard) zaproponował uproszczoną wersję rozumowania Maxwella, znaną obecnie
pod nazwą silnika Szilárda. W swoim eksperymencie myślowym rozważył on
pojemnik o objętości V z jedną cząsteczką (lub atomem) spełniającą równanie
stanu gazu doskonałego pV = kBT (kB jest to stała Boltzmanna). W wyniku
zderzeń ze ściankami cząstka może wymieniać energię z otoczeniem i po każdym
takim zderzeniu jej energia kinetyczna wraca do wartości odpowiadającej
temperaturze otoczenia T . Demon umieszcza dokładnie po środku ruchomą
nieważką przegrodę i sprawdza, po której stronie znajduje się cząsteczka. Po
tej stronie, po której jest cząsteczka, umieszcza nieważką nić przewiniętą przez
nieważki bloczek, a na końcu nici zawieszona jest masa. Wszystkie czynności
zrobione przez demona nie wymagały wykonania pracy. Teraz, gdy cząsteczka
uderzy (wielokrotnie) w przegrodę, spowoduje jego kwazistatyczne (odwracalne)
przemieszczenie się i podniesienie masy na pewną wysokość. Tłok wykonał
pracę, podniósł masę, a wykonana praca jest zgromadzona w postaci energii
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potencjalnej grawitacji. Wykonana praca nad układem przy maksymalnym
przesunięciu się tłoka wynosi

Rys. 2. Schemat ilustrujący eksperyment
myślowy opisujący działanie silnika
Szilárda. Po lewej stronie ciśnienie gazu p
wytwarzane przez jedną cząsteczkę
poruszającą się chaotycznie i uderzającą
w ścianki, po prawej stronie próżnia.
Ponieważ energia wewnętrzna gazu
doskonałego się nie zmieniła, U = 3

2 kBT ,
gaz pobrał ciepło z otoczenia, aby
utrzymać stałą temperaturę T i wykonać
pracę W̄ , co jest zgodne z pierwszą
zasadą termodynamiki ∆U = Q + W̄ .

W = −
V∫

V/2

p(V )dV = −kBT ln 2 < 0,

czyli układ wykonał pracę równą W̄ = kBT ln2. Mamy sprzeczność z drugą zasadą
termodynamiki w sformułowaniu Kelvina. Dla utrzymania stałej temperatury
(proces izotermiczny) układ pobrał z rezerwuaru ciepło w ilości Q = kBT ln 2,
które zostało w całości zamienione na pracę. Entropia rezerwuaru zmalała
o ∆S = Q/T = kB ln 2. Szilárd i jego następcy błędnie uważali (bez podania
dowodu), że proces pomiaru położenia cząsteczki musi produkować entropię nie
mniejszą niż kB ln 2, aby uratować drugą zasadę termodynamiki.
LandauerRolf Wilhelm (William) Landauer

(1927–1999) – amerykański fizyk, znany
z tzw. zasady Landauera. Zajmował się
informatyką teoretyczną.

Najważniejszy krok w kierunku wyjaśnienia paradoksu demona Maxwella
dokonał się w 1961 roku wraz z przełomową pracą Rolfa Landauera. Tematem
pracy Landauera nie był jednak paradoks demona Maxwella per se, lecz
problem przetwarzania logicznego, zapisywania i kasowania informacji. Sama
matematyczna koncepcja informacji logicznej powstała w 1948 roku. Claude
Shannon powiązał informację z prawdopodobieństwem otrzymania danego
przekazu pi. Im mniejsze jest to prawdopodobieństwo, tym większa musi
być ilość informacji zawarta w tym przekazie. Wiadomość, której treść
jest wcześniej znana, pi = 1, nie zawiera żadnej informacji. Dla danego
rozkładu prawdopodobieństwa {pi} Shannon wprowadził średnią informację
H = −

∑
i pi log2 pi, znaną obecnie jako entropia informacji. Logarytm

przy podstawie 2 nawiązuje do układu binarnego i bitu informacji, stanu
logicznego 0 lub 1. Podobno na pomysł, aby nazwać wielkość H entropią, wpadł
John von Neumann, w konwersacji z Shannonem stwierdził, że i tak nikt nie
rozumie, czym jest entropia, więc ta nazwa będzie dobra.
Landauer podzielił logiczne procesy przetwarzania informacji na odwracalne
i nieodwracalne. Przykładem operacji odwracalnej jest operacja jednobitowa
NOT lub dwubitowa CNOT. Jak widać z tabelki działania, znajomość bitu
(bitów) końcowego pozwala jednoznacznie określić bit (bity) początkowy.
Operacje odwracalne są iniekcją, odwzorowaniem jeden na jeden. Są też operacje
nieodwracalne, na przykład operacja OR. Na podstawie znajomości bitu
końcowego nie umiemy ustalić, jakie były bity początkowe.

p ¬p

0 1
1 0

Odwracalna operacja logiczna NOT

p q p′ q′

0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

Odwracalna operacja logiczna CNOT

p q p ∨ q

0 0 0
0 1 1
1 0 1
1 1 1

Nieodwracalna operacja logiczna OR

Ponadto Landauer powiązał proces przetwarzania informacji z procesem
fizycznym. Nośnikiem informacji zawsze jest jakiś układ fizyczny,
a przetwarzaniu informacji musi towarzyszyć zjawisko fizyczne, zgodne
z prawami fizyki. W szczególności zgodne z prawami termodynamiki. Na
przykład stanowi logicznemu 0 odpowiada cząsteczka znajdująca się w lewej
połówce pudełka, w stanie L, a stanowi logicznemu 1 odpowiada cząsteczka
w prawej połowie, w stanie R. Oczywiście możliwych realizacji stanu jednego
bitu jest bardzo wiele. Nośnikiem może być polaryzacja fotonu, magnetyzacja
domeny magnetycznej, spin elektronu, stan ładunkowy bramki MOSFET i wiele
innych możliwości.
Odwracalnym procesom logicznym odpowiadają w przyrodzie odwracalne
procesy fizyczne, niezmieniające całkowitej entropii układu. Na przykład proces
zapisywania czy zapamiętywania informacji jest procesem odwracalnym i polega
na kopiowaniu jeden do jednego stanu pierwszego układu na drugi. Nie ma tutaj
jakiejś minimalnej pracy, która byłaby potrzebna, aby skopiować stan jednego
bitu na stan drugiego.
Najważniejszym spostrzeżeniem Landauera jest jednak obserwacja, że proces
wymazywania pamięci jest nieodwracalny i tym samym odpowiadający mu
proces fizyczny jest też nieodwracalny, generujący ciepło czy dyssypację energii
i zwiększający całkowitą entropię układu. Faktycznie, jeśli umówimy się, że
standardowym stanem odniesienia, nieniosącym informacji, jest stan, w którym
cząsteczka jest w lewej połowie, to zarówno stan logiczny 0, jak i 1, którym
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odpowiadało położenie cząsteczki L i R, jest przekształcany w stan L, czyli
logiczne 0. Po wymazaniu pamięci nie możemy już sprawdzić, jaki był stan
początkowy bitu. Taki proces jest nieodwracalny i musi generować ciepło.

L R

L

Rys. 3. Nieodwracalna operacja
wymazania (skasowania) pamięci. Stany
L i R są mapowane na ten sam stan
odniesienia, zgodnie z naszą umową L.
Znając tylko stan końcowy, nie wiemy,
w jakim stanie początkowym był układ.
Tej operacji nie można odwrócić.

Pracę potrzebną do wymazania jednego bitu pamięci znajdziemy, biorąc pudełko
o objętości V z jedną cząsteczką pozostajacą w kontakcie z rezerwuarem
o temperaturze T , znajdującą się z lewej, L, lub prawej, R, strony. Teraz
od prawej strony przesuwamy bardzo powoli i bez tarcia (kwazistatycznie)
tłok, redukując objętość z V do V/2. Niezależnie od tego, w jakim stanie
początkowym była cząsteczka, po tej operacji znajduje się ona w standardowym
stanie odniesienia L. Wykonana praca nad układem wynosi W = kBT ln 2. Praca
ta przekazana jest do otoczenia w postaci ciepła Q.

L L

L R

Rys. 4. Fizyczna realizacja wymazania
pamięci

Prawo Landauera stwierdza, że minimalna praca potrzebna do wymazania
jednego bitu informacji z pamięci w danej temperaturze T wynosi kBT ln 2.
O ile uczenie się, zapamiętywanie, teoretycznie nie wymaga pracy, to niestety
zapominanie zawsze związane jest z pewną pracą. Dość przewrotna konkluzja.
Bennett

Wróćmy do drugiej zasady termodynamiki i demona Maxwella. W 1982 roku
Charles Bennett powiązał odkrycia Landauera z ponadstuletnim paradoksem

Charles H. Bennett (ur. 1943) –
amerykański fizyk, filozof.

Maxwella. Nawiasem mówiąc, do podobnych wniosków doszedł już w 1970 roku
Oliver Penrose. Aby demon Maxwella czy silnik Szilárda działały w sposób
cykliczny, pamięć demona, w której zapisany był stan cząsteczki, musi być
wymazana (zresetowana). Jedynie wtedy operacja pomiaru stanu cząsteczki
mogła zostać powtórzona. Tak więc nie pomiar stanu cząsteczki, nie otwieranie
przegrody lub mocowanie nitki i bloczka, jak błędnie zakładali Szilárd i inni,
lecz proces kasowania pamięci prowadzi do dyssypacji energii i sprawia, że
druga zasada termodynamiki jest nadal prawdziwa. Egzorcyzmy nad demonem
Maxwella zostały dopełnione.
Największym chyba zaskoczeniem jest jednak powiązanie dwóch z pozoru
zupełnie różnych światów, teorii informacji i termodynamiki. Z punktu widzenia
teorii informacji bit w stanie 0 lub 1 ma entropię informacji równą log2 2 = 1,
gdyż są dwie możliwości z tym samym prawdopodobieństwem 1/2. Stan
standardowy bez informacji 0 ma entropię log2 1 = 0, gdyż prawdopodobieństwo
wystąpienia tego stanu wynosi jeden. Mamy więc zmianę entropii informacyjnej
o jeden w nieodwracalnym logicznie procesie kasowania pamięci.
Zakładając teraz, za Landauerem, że procesom logicznym odpowiadają procesy
fizyczne, możemy przyrównać entropię informacji i entropię termodynamiczną:

S = cH,

gdzie c = kB/ log2 e jest związane ze zmianą podstawy logarytmu z 2 na e
oraz z tym, że entropia termodynamiczna ma wymiar J/K. Tym samym
zmiana entropii wynosi ∆S = kB ln 2 i ilość energii oddanej jako ciepło
Q = T∆S = kBT ln 2 wynosi dokładnie tyle co poprzednio.
Postscriptum
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Po rozwiązaniu eksperymentu myślowego naukowcy rozpoczęli prawdziwe
eksperymenty z demonem Maxwella w laboratoriach. Na przełomie XX
i XXI wieku stały się możliwe eksperymenty, w których manipuluje się
pojedynczymi atomami, elektronami czy fotonami. To otworzyło drogę do
skonstruowania demona Maxwella. Na przykład w 2007 roku naukowcy
wykorzystali bramkę zasilaną światłem, aby zademonstrować działanie demona
Maxwella. W 2010 roku inny zespół opracował sposób wykorzystania energii
wytworzonej przez informacje demona do wprawienia kulki w ruch, w górę,
a w 2016 roku naukowcy zastosowali koncepcję demona Maxwella do dwóch
komór zawierających nie gaz, ale światło. Wykorzystano też aparat mechaniki
kwantowej do sformułowania termodynamiki kwantowej i badania kwantowego
odpowiednika demona Maxwella.
Jak widać, problem zamiany energii w pracę, pochodzący jeszcze z XIX wieku,
jest nadal żywy i aktualny.
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Skaningowa wizja
W 1891 roku niemiecki zoolog Seliq Exner w swojej książce Die Physiologie
der Facettirten Augen von Krebsen und Insekten (Fizjologia oczu złożonych
skorupiaków i owadów) opisał nietypową budowę oka morskiego skorupiaka
o nazwie Copilia quadrata. Intrygujący, acz niejasny, opis sprowokował
wiele lat później naukowców z Wielkiej Brytanii do dokładnych badań tego
dziwnego zwierzęcia. Oko Copilia przypomina konstrukcją pierwsze inżynierskie
rozwiązania stosowane w. . . telewizorach.
Według opisu z końcówki XIX wieku Copilia miała parę oczu składających się
z dwóch soczewek: jednej leżącej na powierzchni i drugiej leżącej we wnętrzu
ciała zwierzęcia, mniej więcej w połowie jego długości. Najbardziej uderzający
był, jak pisał Exner, „stały i żwawy ruch” wewnętrznej soczewki.
Opis sporządzony przez niemieckiego zoologa był na tyle intrygujący, że
wciągnął Brytyjczyków w poszukiwania przedstawicieli gatunku. Nie było to
proste, w wodzie z 14 połowów przeprowadzonych w zatoce Neapolitańskiej
na głębokości 200 m udało im się znaleźć 9 osobników. Niby nie tak mało,
jednak zważmy, że mowa tu o zwierzęciu praktycznie przezroczystym, wielkości
maksymalnie 3 mm, z czego połowę stanowi cieniutki „ogon” (ang. tail, choć
słowo to w języku polskim zarezerwowane jest dla kręgowców). Złowione
skorupiaki poddano dokładnym badaniom, które opublikowano w artykule „The
curious eye of Copilia”, w prestiżowym Nature w 1964 roku.

Copilia quadrata
Źródło: Biodiversity HeritageLibrary,
CC BY 2.0, Wikimedia Commons

Copilia quadrata należy do widłonogów, maleńkich skorupiaków zamieszkujących
powszechnie wody słone i słodkie. Ciało samic Copilia jest przejrzyste, dzięki
czemu pod mikroskopem widać wewnętrzne struktury w działaniu, także oka.
Dwie soczewki, ułożone jedna nad drugą, połączone są delikatną stożkowatą
błoną. Dolna soczewka połączona jest ze zgiętą w łuk pomarańczową strukturą,
będącą receptorem. Z niego prowadzi pojedynczy nerw do mózgu skorupiaka.
Zewnętrzna soczewka jest sztywno zakotwiczona w skorupce pokrywającej
zwierzę. Za to wewnętrzna pozostaje zawieszona na systemie elastycznych
więzadeł i mięśni, które zawiadują ruchem soczewki i przyklejonego do niej
receptora. Wewnętrzne soczewki obu oczu wykonują stale oscylacyjne ruchy
niezależne od ruchów zwierzęcia.
Exner opisał budowę oka tego skorupiaka 5 lat po tym, jak niemiecki wynalazca
Paul Nipkow opatentował „elektryczny teleskop”, który w dużej mierze
przyczynił się do rozwoju telewizji. Oba te twory opierają się na podobnej idei:
tworzenia obrazu metodą skanowania.
Tarcza Nipkowa była podstawowym elementem pierwszych telewizorów i kamer
telewizyjnych. Urządzenie składało się z obracającej się tarczy z serią spiralnie
położonych otworów. Gdy tarcza się obracała, każdy otwór przesuwał się
po innej linii obrazu, skanując go w ten sposób od góry do dołu. Światło,
przechodzące przez otwory, trafiało na światłoczułą komórkę, która zamieniała
zmienną intensywność światła na proporcjonalnie zmienny sygnał elektryczny.
Sygnał był następnie przesyłany z odbiornika, w którym znajdowały się
identyczna, działająca w tym samym tempie, tarcza i układ odwracający sygnał
na świecące punkty, odbierany przez ludzkie oko jako ruchomy obraz. Tarcza
Nipkowa działała zatem jak mechaniczny skaner, który rozkładał obraz na
pojedyncze punkty w czasie.
Brytyjscy naukowcy badający skorupiaka uznali, że układ soczewek i ich ruch
przypomina rozwiązanie stosowane w mechanicznej telewizji skaningowej
stosującej dysk Nipkowa.
Dolna soczewka w oku Copilia porusza się charakterystycznym ruchem
przypominającym ząbki piły, skanuje otoczenie punktowo, po kolei, trochę jak
dzieje się to w trakcie czytania – kolejno następujące po sobie litery składamy
w słowa, śledząc tekst od góry do dołu kartki. Do takiego sposobu rejestracji
obrazu wystarczy jeden receptor i jeden nerw wzrokowy, zupełnie inaczej niż
w ludzkim oku, w którym znajduje się około 126 milionów receptorów i wiele

4

https://www.flickr.com/people/61021753@N02


nerwów składających się w gruby „kabel” nerwu wzrokowego. Jednak aby
otrzymać precyzyjny obraz w układzie jednoreceptorowym, potrzebny jest
solidny system przetwarzania, którego u maleńkiego skorupiaka nie ma.

Proces ewolucji weryfikuje różnego rodzaju rozwiązania. Niektóre z nich znikły
wraz z ginącymi gatunkami, o wielu nigdy się nie dowiemy. Czasem można
jednak podejrzeć, jakie „pomysły” generuje natura. Wciąż trwają, choć nie
rozwinęły się masowo i nie utrwaliły u wyższych organizmów. Co najważniejsze,
widzenie Copilia quadrata oparte na skanowaniu z jej prostym układem
nerwowym może nie daje dobrej jakości obrazu, jednak wychwytuje ruch. Jest
wystarczające dla tych niewielkich skorupiaków, by uniknąć tego, co się rusza.
Jest kluczowe do przeżycia, podobnie jak dla miliardów podobnych stworzeń
nieustannie narażonych na pożarcie przez drapieżniki.

I dobrze, że system jest na tyle mocny, by przetrwać, a na tyle wadliwy, by
zostać pożartym. Bo maleńkie skorupiaki i ich larwy stanowią krytyczny
element w sieci pokarmowej wód. Olbrzymia obfitość tych stworzeń, związana
z ich mizerną szansą na przeżycie, umożliwia rozkwit życia w innych, bardziej
złożonych formach: stawonogów, gąbek, jamochłonów, mięczaków i ryb. A na
końcu, pośrednio, ssaków. Także takich jak ja.

„The curious eye of Copilia”
Gregory R.L., Ross H.E. i Moray N.
Nature 201 (1964)

Marta FIKUS-KRYŃSKA

Zadania
Przygotował Arkadiusz HESS

F 1135. Cząstka jest wyrzucona pionowo w górę z powierzchni Ziemi
z prędkością wystarczającą, aby osiągnąć nieskończoną wysokość (zaniedbując
opór powietrza). Udowodnij, że czas potrzebny do osiągnięcia wysokości h dany
jest wzorem:

t = 1
3

√
2R

g

[(
1 + h

R

)3/2
− 1

]
,

R to promień Ziemi, a g przyspieszenie grawitacyjne na jej powierzchni.
[Źródło: Newtonian Dynamics, Richard Fitzpatrick.]

F 1136. Hydroniusz Kranowski postanowił wykonać w ogrodzie ciekawe
doświadczenie. Zamierzał zmierzyć przepływ wody z kranu ogrodowego
z wykorzystaniem jedynie linijki. Ustalił, że średnica przy miejscu wypływu
ma d1 = 10 mm, a w odległości ∆L = 0,5 m od tego miejsca średnica strumienia
wynosi d2 = 6 mm. Pomóż Hydroniuszowi obliczyć natężenie przepływu wody Q
w jednostkach m3/s.

v2

d1

d2

∆L

v1

Schemat strumienia
wody wypływającego
z kranu

[Zadanie oraz grafika zaczerpnięte z książki: 100 prostych doświadczeń z wodą
i powietrzem Ryszarda Błażejewskiego.]

Przygotował Dominik BUREK

M 1840. Wielomian x3 + px2 + qx + r ma trzy pierwiastki w przedziale (0, 2).
Udowodnić, że

−2 < p + q + r < 0.

M 1841. Dana jest liczba całkowita dodatnia n taka, że
nwd(n, n + 1) < nwd(n, n + 2) < . . . < nwd(n, n + 35).

Udowodnić, że
nwd(n, n + 35) < nwd(n, n + 36).

M 1842. Tabliczka czekolady w kształcie trójkąta równobocznego o boku
długości p składa się z p2 kostek, czyli kawałków w kształcie trójkąta
równobocznego o bokach długości 1, równoległych do boków tabliczki czekolady.
Dwóch graczy na zmianę może odłamać kawałek w kształcie trójkąta (łamiąc
wzdłuż jednej z linii podziału czekolady na kostki). Gracz, który nie ma ruchu
lub zostawi przeciwnikowi dokładnie jedną kostkę, przegrywa. Załóżmy, że p jest
liczbą pierwszą. Który z graczy ma zwycięską strategię?Rozwiązania na str. 24
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Teorie rozstrzygalne
Łukasz KAMIŃSKI** Wydział Matematyki, Informatyki

i Mechaniki, Uniwersytet Warszawski
Od wieków ludzie marzą o narzędziu, które byłoby w stanie odpowiedzieć
na każde pytanie. Nie bez powodu wymyślone zostały wyrocznie, magiczne
kule. . . czy też sztuczna inteligencja. Intuicja podpowiada jednak, że nawet
jeśli którekolwiek z powyższych odpowie na nasze pytanie, to do odpowiedzi
powinniśmy podejść z ograniczonym zaufaniem. Czy da się zatem stworzyć
narzędzie, które nigdy się nie myli?

Ograniczmy się do pytań matematycznych. Naszym celem jest więc maszyna,
która po otrzymaniu matematycznego stwierdzenia odpowiada, czy jest ono
prawdziwe, czy też nie. Jeśli założymy, że pytania będą dotyczyć ustalonej
struktury matematycznej, zaś stwierdzenia, o których prawdziwość pytamy, będą
wyrażone w pewnym formalnym języku, to czy możemy mieć nadzieję na sukces?

Logika pierwszego rzędu

Stwierdzenia (zdania) będziemy formułować w tzw. logice pierwszego rzędu.
W uproszczeniu oznacza to, że możemy używać zmiennych (np. x, y, . . .),
kwantyfikatorów ∀, ∃, standardowych spójników logicznych ∧, ∨, ¬, ⇒, nawiasów
oraz symboli funkcyjnych i relacyjnych z pewnego ustalonego wcześniej
zbioru, zwanego sygnaturą. Na przykład sygnaturą może być {=, +, ·}, zaś
zdaniem logiki pierwszego rzędu nad tą sygnaturą ∀x∃y(y + y = x) lub też
∀x∀y∀z(x · y = x · z ⇒ x + y = x + z). Z drugiej strony, zdanie ∀x∈R∃y(x · x) · x = y
nie jest poprawne, i to z kilku powodów: w rozważanej w tym przykładzie
sygnaturze nie ma symbolu relacyjnego ∈ R czy też ∈, a ponadto w logice
pierwszego rzędu przy kwantyfikatorach nie może stać nic więcej oprócz samych
tylko zmiennych. Zajmijmy się więc zdaniami, które są poprawne. Czy zatem
∀x∃y(y + y = x) jest zdaniem prawdziwym? To zależy od kontekstu! Przykładowo
w zbiorze liczb naturalnych, gdzie + oraz · interpretujemy standardowo jako
dodawanie i mnożenie, zdanie ∀x∃y(y + y = x) nie jest prawdziwe. Jeśli jednak
zapytamy o jego prawdziwość w zbiorze liczb rzeczywistych (gdzie + oraz ·
znów interpretujemy standardowo), to poprawna odpowiedź brzmi: prawda.
Nasze pytania powinny więc dotyczyć ustalonej struktury, czyli zbioru wraz
z interpretacjami symboli z sygnatury. Teorią struktury nazywamy zbiór
wszystkich zdań prawdziwych w tej strukturze. Przykładowo, przez ⟨N; +, ·, =⟩
oznaczamy strukturę liczb naturalnych ze standardowo zdefiniowanymi
działaniami + oraz ·, zaś przez Th⟨N; +, ·, =⟩ oznaczamy jej teorię. Mówimy,
że teoria jest rozstrzygalna, jeśli istnieje algorytm, który mając dane na wejściu
zdanie logiki pierwszego rzędu, jest w stanie poprawnie odpowiedzieć, czy należy
ono do tej teorii.O teoriach rozstrzygalnych można

przeczytać również w nieco starszych
wydaniach Delty, np. ∆7

74. (Nie)rozstrzygalność w liczbach naturalnych

Pochylmy się nad teorią Th⟨N; +, ·, =⟩. Zauważmy, że za pomocą mnożenia można
zdefiniować m.in. relację podzielności. Ściślej rzecz biorąc, można wprowadzić
relację a|b, która jest tak naprawdę skrótem zdania ∃c (a · c = b). Mając do
dyspozycji relację podzielności, można też napisać formułę P(p) orzekającą, iż
p jest liczbą pierwszą: ∀a∀b (a · b = p ⇒ (a = p ∨ b = p) ∧ ¬(a = b)). Podobnie
dzięki dodawaniu możemy porównywać liczby, bo a ⩽ b jest tak naprawdę skrótem
zdania ∃c (a + c = b). To pozwala już wyrażać naprawdę wiele twierdzeń. Gdyby
ktoś skonstruował maszynę potrafiącą rozstrzygać, czy dane zdanie należy do tej
teorii, byłby to prawdziwy przełom!

Jednak, jak można się było spodziewać, nie jest tak dobrze! Teoria Th⟨N; +, ·, =⟩Można by chociażby zapytać
o prawdziwość zdania:
∀N ∃p∃q (p ⩾ N ∧ q = p + 2 ∧ P(p) ∧ P(q)) .

rozstrzygalna nie jest, co wnioskujemy z jednego ze słynnych twierdzeń Gödla.
Czy w takim razie cała nadzieja przepadła? Może po prostu chcieliśmy zbyt
wiele? Co by na przykład było, gdyby powstrzymać się od używania mnożenia?
Badania nad teorią Th⟨N; +, =⟩ prowadził już w 1929 roku Mojżesz Presburger
(od jego nazwiska jest ona nazywana arytmetyką Presburgera). Z jego pracy
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można wywnioskować, że teoria ta jest rozstrzygalna! Załóżmy jednak, że
jesteśmy zachłanni i chcemy móc używać jeszcze jakiejś relacji, zachowując
przy tym rozstrzygalność. Wiemy już, że rozszerzenie arytmetyki Presburgera
o mnożenie to zbyt dużo. Jednak może jeśli ograniczymy się do dorzucenia
relacji podzielności |, to zachowamy rozstrzygalność? Niestety nie. Widzieliśmy
już, że mając dodawanie, możemy zdefiniować relację porządku ⩽. Podobnie +
oraz | pozwalają już zdefiniować mnożenie. Formalnie chcemy umieć zastąpić
każde wystąpienie c = a · b równoważnym zdaniem nieużywającym symbolu
mnożenia „·”. Zauważmy, że gdybyśmy mogli podnosić do kwadratu, to byłoby
łatwo. Istotnie, zdanie c = a · b jest równoważne zdaniu c + c + a2 + b2 = (a + b)2.
Ale jak zdefiniować na przykład a2? Niech x będzie najmniejszą liczbą większą
od 1, spełniającą (a − 1)|(x − 1) ∧ (a + 1)|(x − 1). Wówczas jeśli 2|a, to x = a2, zaś
jeśli 2 ∤ a, to x + x = a2 (polecamy zastanowić się nad precyzyjnym uzasadnieniem
tego rozumowania). To już wystarcza do stworzenia definicji. Wniosek jest taki,
że Th⟨N; +, |, =⟩ nie jest rozstrzygalna, bo nad sygnaturą {+, |, =} jesteśmy
w stanie wyrazić to samo co nad sygnaturą {+, ·, =}.
Jak widać, nie jest łatwo rozszerzyć arytmetykę Presburgera, zachowując przy
tym rozstrzygalność. Istnieją jednak nietrywialne przykłady, jak to zrobić.
Jednym z nich jest arytmetyka Semënova, czyli arytmetyka Presburgera
z dodatkiem funkcji pow2(n) = 2n. Zachęcam Czytelnika do pomyślenia nad
ciekawymi przykładami zdań w logice pierwszego rzędu nad sygnaturą tej teorii.
Mnożenie nie takie straszne
Powróćmy do struktury ⟨N; +, ·, =⟩. Czy mnożenie samo w sobie jest
odpowiedzialne za nierozstrzygalność jej teorii? Wcale nie! Okazuje się, że
teoria Th⟨N; ·, =⟩ jest rozstrzygalna, co zostało ogłoszone w pracy Thoralfa
Skolema, a później w pełni udowodnione przez Andrzeja Mostowskiego. Na
cześć tego pierwszego teorię tę nazywamy arytmetyką Skolema. Podobnie jak
wcześniej, zastanówmy się, co można dodać do arytmetyki Skolema, zachowując
rozstrzygalność. Oczywiście dodawanie odpada, ale może na przykład relacja
porządku ⩽? Po pierwsze, za pomocą ⩽ można zdefiniować funkcję następnik
succ(n) = n + 1 (Czytelniku, sprawdź sam!). Następnie można zdefiniować
dodawanie za pomocą tzw. tożsamości Tarskiego:

a + b = c ∨ c = 0 ⇐⇒ succ(ac) · succ(bc) = succ(c2 succ(ab)).
Wynika stąd, że Th(N, ·,⩽) rozstrzygalna nie jest (bo w przeciwnym wypadku
Th⟨N; +, ·, =⟩ byłaby rozstrzygalna). Istnieją jednak relacje, które można dorzucić,
nie tracąc rozstrzygalności. Przykładem jest relacja a ∼ b, która zachodzi wtedy
i tylko wtedy, gdy liczby a, b mają dokładnie tyle samo dzielników pierwszych, nie
wliczając krotności (np. 20 ∼ 6). Fakt ten został udowodniony w 1959 roku przez
Salomona Fefermana i Roberta Vaughta.
Nie tylko liczby naturalne
Jak dotąd przyglądaliśmy się wyłącznie strukturze liczb naturalnych. Rozważmy
więc teraz liczby rzeczywiste. W tym miejscu Czytelnik może poczuć się
zaskoczony. Alfred Tarski udowodnił, iż struktura (R; +, ·, =) ma rozstrzygalną
teorię! Ma to kilka ciekawych następstw. Przykładowo, twierdzenie to implikuje
istnienie algorytmu, który rozstrzyga, czy dane równanie wielomianowe (np.
x4 − 3x + 4 = 0) ma rozwiązanie rzeczywiste. Innym zastosowaniem mogą być
zadania z geometrii analitycznej, które to da się zakodować jako zdania nad
sygnaturą {+, ·, =}. Z twierdzeniem Tarskiego jest też związany intrygującyWięcej o zastosowaniach tego twierdzenia

pisze Lorenzo Clemente w ∆2
23. problem otwarty. Nie wiadomo, czy teoria struktury (R; +, ·, exp, =) (gdzie exp(x)

oznacza funkcję ex) jest rozstrzygalna, czy też nie. Można za to udowodnić, że
teoria struktury (R; +, ·, sin, =) jest nierozstrzygalna.
Na zakończenie dopowiedzmy jeszcze, że teoria Th(Q; +, ·, =) jest nierozstrzygalna
(co zostało udowodnione przez Julię Robinson), a teoria Th(C, +, ·, =) jest
rozstrzygalna (co pozostawiamy jako ćwiczenie). Czytelnikowi pragnącemuPodpowiedź: rozstrzygalność T h(C, +, ·, =)

udowadniamy, korzystając
z rozstrzygalności T h(R; +, ·, =). dowiedzieć się więcej na opisany tu temat polecamy m.in. artykuł A Survey

of Arithmetical Definability autorstwa Alexisa Bèsa.
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ąt Otwarty 11◦: Zwierzę w pudełku

Bartłomiej PAWLIK Politechnika Śląska

Jakie zwierzątko jest schowane w pudełku? Fizyk zakrzyknąłby: Oczywiście, że
kot! Natomiast matematyk wie, że może chodzić o pewnego jadowitego gada,
któremu poświęcony jest niniejszy odcinek naszego Kąta.
Zacznijmy od teoriografowego uogólnienia pojęcia pudełka. Kostką n-wymiarową
nazywamy graf mający 2n wierzchołków, każdy z nich etykietujemy
jednoznacznie ciągiem binarnym długości n i przyjmujemy, że dwa wierzchołki
są połączone krawędzią, gdy ich ciągi binarne różnią się na dokładnie jednejInformatyk mógłby stwierdzić, że chodzi

o ciągi binarne, których odległość
Hamminga jest równa 1. pozycji – takie dwa wierzchołki nazywamy sąsiednimi.

Poniżej pokażemy przykładowe reprezentacje graficzne kostek wymiaru nie
większego niż 4.Gdybyśmy dodali dwa warunki

geometryczne: 1) każda krawędź ma taką
samą, ustaloną, długość i 2) każde dwie
sąsiednie krawędzie są wzajemnie
prostopadłe, to zaprezentowane kostki
moglibyśmy nazwać n-wymiarowymi
hipersześcianami, a załączony rysunek
prezentowałby przykładowe rzuty na
płaszczyznę kilku najprostszych
hipersześcianów. Są nimi, odpowiednio,
odcinek, kwadrat, sześcian i tesserakt.
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Skonstruujmy ścieżkę w następujący sposób. W rozważanej kostce zaczynamy
w dowolnie wybranym wierzchołku i w każdym kroku przechodzimy z ostatnio
odwiedzonego wierzchołka do wierzchołka z nim sąsiadującego tak długo, jak
jest to możliwe zgodnie z zasadą: po dotarciu do nowego wierzchołka jego
poprzednik wraz ze wszystkimi swoimi sąsiadami jest już niedostępny.
Zademonstrujmy to na przykładzie kostki trójwymiarowej (pudełka):

Otrzymaną w ten sposób ścieżkę nazywamy wężem.
Długością węża nazywamy liczbę krawędzi, przez które przechodzi. Zauważmy,
że każdy wąż w trójwymiarowej kostce ma długość równą 4, natomiast
w czterowymiarowej można skonstruować węże różnych długości!

Co ciekawe, dla każdego n ⩾ 2 można łatwo skonstruować
relatywnie krótkiego węża – mającego długość 2n − 2 (czy
wiesz jak?). Trochę trudniej jest uzasadnić, że krótsze
węże nie występują w przyrodzie. Natomiast określenie
rozmiaru najdłuższego węża jest nie lada wyzwaniem!
Obecnie znamy go tylko dla wymiarów n ⩽ 8:

1, 2, 4, 7, 13, 26, 50, 98
(OEIS: A099155). Jak długi może być wąż
w 9-wymiarowym pudełku? Jeżeli uda Ci się, Czytelniku,
znaleźć odpowiedź na to pytanie, to daj mi znać!

Już wiemy, że w pudełku matematyka można znaleźć to samo, co w kieszeni
skąpca. Wracając jednak do kotów – zauważmy, że one też bywają umieszczane
w różnych miejscach. Koty w pudełkach są uwielbiane przez fizyków, koty
w workach przez hazardzistów, a koty w internecie przez nas wszystkich!
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O obwodach poliomin Piotr PIKUL*
Poukładajmy jednostkowe kwadraty na płaszczyźnie. Jeden kwadrat oczywiście* Wydział Matematyki i Informatyki UJ
nie pozwala na żadną mnogość konfiguracji, a jego obwód wynosi 4 jednostki.
Dwa też nie dają dużej swobody, jeśli chcemy, aby przylegały do siebie bokami.
Przy takim założeniu można ułożyć tylko kostkę domina, o obwodzie 6.
Począwszy od trzech kwadratów, pojawia się jakaś dowolność. Możliwości są
jednak tylko dwie i obie dają taki sam obwód powstałego wielokąta. Cztery

Małe układy kwadratowych kafelków
(poliomina) i ich prostokąty ograniczające

kwadraty można zestawić na aż 5 sposobów, w tym jeden o obwodzie 8 – takim
samym, jak osiągany przez 3 kafelki. Jednak obwód obszaru pięciopolowego już
nie może wynosić zaledwie 8 jednostek. Czytelnik może spróbować wyznaczyć
kilka kolejnych wartości minimalnego obwodu figury ułożonej z n kwadratów
(czyli tytułowego poliomina).

W tym artykule przedstawimy pełny dowód jawnego wzoru na minimalny obwód.
Wydaje się on całkiem ciekawy, ze względu na różnorodność kolejnych etapów,
choć wszystkie są elementarne.

Możemy od razu przyjąć, że konfiguracje kafelków nie składają się
z oddzielonych części; zsuwając ewentualne „wyspy”, możemy zmniejszyć
łączny obwód, ponieważ miejsce styku przestanie się doliczać do obwodu.
Zauważmy teraz, że na każdym układzie kwadratów można opisać dokładnie
jeden minimalny prostokąt. Dowolny wiersz i dowolna kolumna tego prostokąta
są przecinane przez co najmniej dwie krawędzie zewnętrzne ułożonej
figury – tę przed pierwszym i tę za ostatnim polem leżącym w rozważanym
wierszu. Możemy przypisać te krawędzie jednoznacznie do jednostkowych

Prostokąt ograniczający poliomino, na
którego obwodzie zaznaczono krawędzie

przypisane do obwodu prostokąta

krawędzi tworzących obwód prostokąta – tych, które wyznaczają krańce
rozważanego wiersza/kolumny. W ten sposób wykazaliśmy, że obwód prostokąta
ograniczającego jest nie większy niż obwód układu kwadratowych kafelków.

Zauważmy teraz, że kafelki z danego wiersza możemy zsunąć na jedną (np.
lewą) stronę, tak aby tworzyły jeden prostokąt (wysokości 1). Postępując tak
z każdym wierszem, zapewnimy, że żaden z nich nie zawiera więcej niż dwóch
krawędzi. Potem podobnego zsunięcia możemy dokonać w każdej z kolumn.
Czy to nie „popsuje” nam żadnego wiersza? Nie, ponieważ po zsunięciu wierszy
liczba kafelków w kolejnych kolumnach może się tylko zmniejszać – zatem po
zsunięciu kolumn otrzymamy nierosnące „wieże”. Należy zauważyć, że podczas
tego całego zsuwania prostokąt ograniczający mógł się pomniejszyć, ale to nie
przeszkadza – wszak szukamy minimalnego obwodu. Zatem zachowując (lubOtrzymany efekt – spójność kolumn

i wierszy – jest nazywany wypukłością
poliomina wręcz zmniejszając) prostokąt ograniczający, byliśmy w stanie ułożyć wszystkie

pola tak, że każdy wiersz i kolumna zawierają dokładnie dwie krawędzie, czyli
obwód figury jest teraz równy obwodowi prostokąta ograniczającego!

Pytanie zatem sprowadza się do tego, jaki najmniejszy
obwód może mieć prostokąt o polu co najmniej n?
Aby to rozstrzygnąć, pokażemy najpierw, że możemy
ograniczyć uwagę do pewnego szczególnego typu
prostokątów.

Rozważmy dwa prostokąty, a×b i c×d, o jednakowym
obwodzie. Zachodzi wtedy (a + b)2 = (c + d)2, czyli
2(cd − ab) = a2 + b2 − c2 − d2. Mając tę zależność,
otrzymujemy kolejną:

(a − b)2 − (c − d)2︸ ︷︷ ︸
różnice długości boków

= a2 + b2 − c2 − d2 − 2ab + 2cd

= 4(cd − ab︸ ︷︷ ︸
pola

),

która oznacza, że prostokąt o mniejszej różnicy długości
boków ma większe pole! Gdybyśmy mieli ustalony,
całkowity obwód 2k, to byłoby wiadomo, że aby
zmaksymalizować pole prostokąta o takim obwodzie,

należy znaleźć dwie liczby całkowite a, b spełniające
a + b = k oraz minimalizujące różnicę |a − b|.
Nie trzeba chyba tłumaczyć obserwacji, że obwód prostokąta
o całkowitych długościach boków jest liczbą parzystą.

Dla parzystego k odpowiedź to oczywiście a = b = k/2
(nie sposób o mniejszą różnicę), a przypadek nieparzysty
wymaga: a = k−1

2 = ⌊k/2⌋, b = k+1
2 = ⌈k/2⌉ (równość jest

niemożliwa, wobec nieparzystości, więc różnica b − a = 1
jest optymalna). Tak określone prostokąty będziemy
nazywać wypchanymi.
⌊x⌋ (podłoga z x) to największa liczba całkowita nie większa od x,
natomiast ⌈x⌉ (sufit z x) to najmniejsza liczba całkowita nie
mniejsza od x. Dla każdej liczby rzeczywistej x zachodzą nierówności
x − 1 < ⌊x⌋ ⩽ x ⩽ ⌈x⌉ < x + 1.

Zauważmy, że jeśli n komórek można umieścić
w prostokącie ograniczającym o obwodzie 2k, to można
je umieścić w wypchanym prostokącie o takim samym
obwodzie. Teraz musimy tylko wyznaczyć najmniejsze k,
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dla którego wypchany prostokąt o obwodzie 2k ma pole
co najmniej n.
Prostokąt ograniczający figury realizującej minimalny obwód dla
danego pola nie musi być wypchany. Ważne, że istnieje wśród nich
(figur minimalizujących. . . ) choć jedna o tej własności.

Niech k będzie największą liczbą całkowitą spełniającą
k2 < n. Wtedy albo n kafelków mieści się w prostokącie
k×(k + 1), albo dopiero w kwadracie (k + 1)×
(k + 1). Pierwszy przypadek oznacza, że k2 <
n ⩽ k2 + k, co po pomnożeniu przez 4 daje 4k2 <
4n ⩽ 4k2 + 4k. Jeśli z prawej strony dodamy 1, to
nierówność będzie zachowana, a zyskamy możliwość
zwinięcia do kwadratu: (2k)2 < 4n ⩽ (2k + 1)2, czyli
2k <

√
4n ⩽ 2k + 1. To oznacza ni mniej, ni więcej,

tylko ⌈2
√

n⌉ = 2k + 1. Drugi przypadek jest analogiczny.
Wiedząc, że k2 + k < n ⩽ (k + 1)2, ponownie mnożymy
przez 4 i otrzymujemy, że (2k + 1)2 ⩽ 4n ⩽ (2k + 2)2.
Dodając 1 do 4k2 + 4k, pozornie straciliśmy silną
nierówność, ale zauważmy, że (2k + 1)2 jest liczbą
nieparzystą, czyli równość jednak nie może wystąpić.
Po spierwiastkowaniu otrzymujemy ⌈2

√
n⌉ = 2k + 2.

W obu przypadkach sufit z podwojonego pierwiastka

okazuje się połową obwodu odpowiedniego wypchanego
prostokąta, czyli ostatecznie minimalny obwód dla n
kwadratowych kafelków wynosi 2⌈2

√
n⌉.

Na koniec jeszcze krótka uwaga: jak ten wzór można
szybko wyprowadzić metodą „na chłopski rozum”.
Można odgadnąć (formalny dowód mamy zresztą
za sobą), że dla n będących kwadratami wartość
minimalnego obwodu wynosi 4

√
n. Pozostaje ustalić, jak

zaokrąglamy powyższą liczbę, gdy nie jest całkowita.
Obwód musi być parzysty, ponadto przyjmijmy, że
zaokrąglamy w górę. Takie zaokrąglanie (do nie
mniejszej liczby parzystej) ma postać 2⌈x/2⌉ (proszę
sprawdzić), co po podstawieniu x = 4

√
n daje „nasz

wzór”.

Jako przedsmak przyszłej odsłony przygody z obwodami
spróbujmy teraz poukładać kafelki w kształcie
równobocznych trójkątów. Zabawa nimi jest nieco
trudniejsza, gdyż brakuje tu tak wspaniałego
sprzymierzeńca jak papier w kratkę.
Istnieje papier w „trójkątną kratkę”, ale chyba nie każdy ma go
w domu.

Tym razem jakakolwiek różnorodność pojawia się dopiero przy czterech polach,
choć wszystkie trzy przypadki mają ten sam obwód (6). Dla pięciu kafelków
również każda konfiguracja daje taki sam obwód (7). Do tego momentu
otrzymujemy bardzo przyjemny postęp arytmetyczny, ale sześć trójkątów
równobocznych pozwala nam zbudować sześciokąt foremny, którego obwód
wynosi 6. Okazuje się, że funkcja minimalnego obwodu dla kafelków trójkątnych

Kształty ułożone z 1–5 trójkątów
równobocznych. Nazywa się je
„poliamondami”, ponieważ po angielsku
dwa trójkąty tworzą „di-amond”
(karo, ♢). Jako że „diament” nie jest
w Polsce zwyczajową nazwą rombu,
moglibyśmy nazywać konfiguracje
trójkątów „poliapezami”, skoro trzy
tworzą „tr(i)-apez”. . .

nie jest nawet monotoniczna!
Można by się spodziewać, że dla dużych n obwód „okrągłej masy” trójkątów
zacznie zachowywać się „normalnie”, ale w pewnym sensie „skacze” jeszcze
bardziej:

3, 4, 5, 6, 7,
▽
6, 7, 8, 9,

▽
8, 9, 10,

▽
9, 10, 11,

▽
10, 11, 12,

▽
11, 12, 13,

▽
12, 13,

▽
12, 13, 14, . . .

Dopełnieniem tego obrazu grozy jest jawny wzór:
2

⌈
n+

√
6n

2

⌉
− n.

Jego elementarne wyprowadzenie przedstawimy w części drugiej.

Bryły rozpięte na krzywych Jarosław GÓRNICKI*
Znany już w starożytności problem izoperymetryczny:* Kontakt: gornicki59@gmail.com

Który z trójkątów o ustalonym obwodzie ma największe pole?
rozwiążemy elementarnie, korzystając z nierówności między średnimi.
Przypomnijmy, że średnia geometryczna dodatnich liczb jest nie większa niż ich
średnia arytmetyczna. Dla trzech dodatnich liczb x, y, z stwierdzenie to przybiera
postać:Czytelników, którzy nie znają dowodu

tego faktu, zachęcamy do wykazania go,
szczególnie w używanym w tym artykule
przypadku trzech liczb.

3
√

xyz ⩽
1
3(x + y + z),

więc jeśli x + y + z = d, to iloczyn xyz ma wartość największą, gdy
x = y = z = 1

3 d, bo wtedy xyz = ( 1
3 d)3 = [ 1

3 (x + y + z)]3.
Pole trójkąta o bokach długości a, b, c można łatwo obliczyć, korzystając ze
znanego już od I wieku wzoru Herona:

S =
√

p(p − a)(p − b)(p − c), gdzie p = 1
2(a + b + c),

dlatego przy ustalonym obwodzie a + b + c wartość S jest największa, gdy
p − a = p − b = p − c, czyli gdy a = b = c.
Wykazaliśmy więc twierdzenie:
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Twierdzenie 1. Trójkąt o danym obwodzie ma największe pole, gdy jest
równoboczny.

Prawdziwy jest fakt ogólniejszy (znany już w starożytnej Grecji):

Twierdzenie 2 (Zenodor, III/II w. p.n.e.). Wielokąt o ustalonym obwodzie ma
największe pole, gdy jest foremny.

Problematyka „ekstremalna” w przestrzeni trójwymiarowej (czyli w przestrzeniRozwiązanie problemu
izoperymetrycznego podane jest
w książce: J. Górnicki, Okruchy
matematyki, WN PWN, Warszawa 2009,
w artykułach Nierówności, wypukłość
i ekstrema oraz Własności ekstremalne
figur izoperymetrycznych.

euklidesowej R3) jest odrobinę bardziej kłopotliwa. Naszym celem będzie
rozwiązanie elementarnymi środkami następującego problemu:

Problem. Jaki kształt krzywej (prostowalnej) o długości L zapewnia, że
najmniejszy zbiór wypukły zawierający tę krzywą ma największą objętość.

Problematyka ta pojawiła się w XX wieku m.in. w pracach J. Egerváry’ego,Krzywą nazywamy prostowalną, gdy
istnieje możliwość określenia jej długości
jako granicy ciągu długości łamanych
coraz lepiej ją przybliżających.

M. Krejna, Z. Melzaka, A. Nudelmana, I. Schoenberga.

Czworościan ekstremalny. Zacznijmy od prostej sytuacji. Łamaną o czterech
wierzchołkach, które nie leżą w jednej płaszczyźnie, nazywamy szkieletem
czworościanu (rys. 1). Nasz problem w tym przypadku ma postać: jaki szkielet
ABCD o danej długości AB + BC + CD = L rozpina czworościan ABCD
o największej objętości?

Rozwiążemy ten problem, sprowadzając go do omówionego już problemu

Rys. 1

izoperymetrycznego na płaszczyźnie. Przyjmijmy, że w czworościanie ABCD
długość boku AD jest równa h (oczywiście h < L). Niech Π będzie płaszczyzną
prostopadłą do boku AD zaczepioną w punkcie A. Wtedy rzut prostopadły
czworościanu ABCD na płaszczyznę Π jest trójkątem AEF (rys. 2).

A
B

C

D

E

F Π

Rys. 2

Lemat 1. Objętość V czworościanu ABCD dana jest wzorem

(1) V = 1
3hS,

gdzie h jest długością boku AD, a S jest polem trójkąta AEF .

Czworościany ABCD i ABFD mają wspólną ścianę – trójkąt ABD. Ponieważ
punkty C i F są w takiej samej odległości od płaszczyzny trójkąta ABD,
więc objętości tych czworościanów są równe. Podobnie czworościany ABFD
i AEFD mają wspólną ścianę – trójkąt AFD. Punkty B i E są w takiej samej
odległości od płaszczyzny trójkąta AFD, więc objętości tych czworościanów są
równe. Zatem czworościany ABCD i AEFD mają równe objętości, a objętość
czworościanu AEFD wyraża się wzorem (1). 2

Lemat 2. Szkielet ABCD o długości L i odległości AD = h (h < L) rozpina
czworościan ABCD o największej objętości, gdy boki AB, BC, CD mają równe
długości i tworzą z odcinkiem AD kąty równe α = arc cos h

L .

Zgodnie ze wzorem (1) objętość V czworościanu ABCD będzie największa, gdy
największe będzie pole S, bo h jest ustalone. Musimy więc określić długość
i położenie w przestrzeni boków AB, BC i CD tak, aby pole trójkąta AEF było
największe. Zgodnie z twierdzeniem 1 osiągniemy to, jeśli zmaksymalizujemy
obwód trójkąta AEF, jednocześnie sprawiając, że będzie to trójkąt równoboczny.

Bryła DABEFC jest wielościanem wypukłym o podstawie trójkątnej i ścianach
bocznych prostopadłych do płaszczyzny Π.

A

D

F E

C
B

Ā

Rys. 3. Sytuacja przed optymalizacją

Wielościan to bryła ograniczona
płaszczyznami. Wielościan jest wypukły,
gdy leży po jednej stronie każdej ze
swoich ścian. Rozetnijmy ten wielościan wzdłuż pionowych krawędzi DA, BE, CF oraz

pozostałych krawędzi szkieletu. Teraz połóżmy ściany DAFC, CFEB, BEA
na płaszczyźnie Π na zewnątrz trójkąta AEF . Następnie przesuńmy je w taki
sposób, aby połączyć je pasującymi do siebie bokami (rys. 3).

α

A

D

F E

C

B

ĀC1 B1

A1

.
L

Rys. 4. Sytuacja po optymalizacji

Odcinek AĀ ma długość równą obwodowi trójkąta AEF , utworzonego z rzutów
prostopadłych odcinków DC, CB, BA na płaszczyznę Π. Rzuty te będą w sumie
najdłuższe, gdy punkty D, C, B, Ā (rys. 3) będą leżały na jednej prostej. Będzie
ona nachylona do odcinka DA pod kątem α = arc cos h

L (rys. 4). Warunki
AF = FE = EA zapewnimy, gdy boki DC, CB, BA szkieletu ABCD będą
tej samej długości. Ten opis jednoznacznie wyznacza położenie wierzchołków
czworościanu: na płaszczyźnie Π stawiamy prawidłowy graniastosłup trójkątny,
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którego pionowa krawędź DA = h (A ∈ Π), a podstawa ma obwód równy√
L2 − h2. Kolejne odcinki DC, CB, BA leżą na kolejnych ścianach bocznych

graniastosłupa, tworząc za każdym razem kąt α = arc cos h
L z odcinkiem DA

(oczywiście ten sam efekt uzyskamy, gdy kolejne odcinki AB, BC, CD będą
tworzyły za każdym razem kąt α z odcinkiem AD). Tak utworzony szkielet
ABCD o długości L i odległości DA = h (h < L) rozpina czworościan ABCD
o największej objętości. 2

Objętość tak określonego czworościanu, zgodnie ze wzorem (1), jest równa
V =

√
3

108 · h(L2 − h2), gdzie 0 < h < L. Łatwo sprawdzamy, że przyjmuje ona
wartość największą dla h = L√

3 , więc czworościan ekstremalny ma objętość równą
1

162 · L3 ≈ 0,006 · L3. Co ciekawe, czworościan foremny o krawędzi L
3 ma objętość

równą
√

2
324 · L3 ≈ 0,0044 · L3, czyli istotnie mniejszą niż czworościan ekstremalny.

Udowodniliśmy więc następujące twierdzenie o czworościanie ekstremalnym:

Twierdzenie 3. Szkielet ABCD o długości L rozpina czworościan
o największej objętości, gdy kolejne boki AB, BC, CD leżą na kolejnych
ścianach bocznych prawidłowego graniastosłupa trójkątnego o pionowej krawędzi
AD = L√

3 i obwodzie podstawy
√

2
3 · L, a każdy z odcinków AB, BC, CD tworzy

z krawędzią AD kąt α = arc cos 1√
3 .

Wielościan ekstremalny. Uogólnijmy teraz rozważania dotyczące
czworościanu ekstremalnego na wielościany o większej liczbie wierzchołków.
Łamaną A0A1A2 . . . An (n ⩾ 3), dla której każda płaszczyzna przechodząca przez
punkty A0 i An (A0 ≠ An) ma nie więcej niż jeden punkt wspólny z łamaną
A1A2 . . . An−1, nazywamy szkieletem.

Przyjmijmy, że szkielet A0A1A2 . . . An−1An ma długość A0A1 + A1A2 +
. . . + An−1An = L, a długość odcinka A0An jest równa h (h < L). Trójkątne
ściany A0A1An, A0A1A2, A0A2A3, . . ., A0An−1An oraz AnAn−1A0,
AnA1A2, AnA2A3,. . ., AnAn−2An−1 wycinają w przestrzeni R3 wielościan
A0A1A2 . . . An−1An rozpięty przez szkielet A0A1A2 . . . An−1An (rys. 5).

Niech Π będzie płaszczyzną prostopadłą do odcinka A0An zaczepioną w punkcie
A0. Wtedy rzut prostopadły wielościanu A0A1A2 . . . An−1An na płaszczyznę Π
jest n-kątem A0A

′

1A
′

2 . . . A
′

n−1 o polu Sn (rys. 5).

Π

A′
1

A′
2

An

A0

A2

A1

A′
n−2

An−2

An−1

A′
n−1

Rys. 5

Ponieważ wielościan A0A1A2 . . . An−1An jest skończoną sumą czworościanów
A0A1A2An, A0A2A3An, . . ., A0An−2An−1An, a do każdego z nich ma
zastosowanie lemat 1, więc prawdziwy jest następujący rezultat:

Lemat 3. Objętość Wn+1 wielościanu A0A1A2 . . . An−1An dana jest wzorem

(2) Wn+1 = 1
3hSn,

gdzie h jest długością odcinka A0An, a Sn jest polem n-kąta
A0A

′

1A
′

2 . . . A
′

n−1.

Korzystając z twierdzenia 2 (Zenodora) oraz powtarzając rozumowanie
uzasadniające lemat 2, uzyskujemy następującą konstrukcję maksymalizującą
objętość wielościanu A0A1A2 . . . An−1An rozpiętego na szkielecie
A0A1A2 . . . An−1An o długości L i odległości A0An = h (h < L): na płaszczyźnie
Π stawiamy prawidłowy graniastosłup n-kątny o pionowej krawędzi A0An = h
(A0 ∈ Π), którego podstawa ma obwód równy

√
L2 − h2. Kolejne odcinki A0A1,

A1A2, . . ., An−1An leżą na kolejnych ścianach bocznych graniastosłupa, tworząc
za każdym razem z odcinkiem A0An kąt α = arc cos h

L .

Ponieważ pole n-kąta foremnego (n ⩾ 3) o boku długości a i kącie środkowym
γ = 2π

n dane jest wzorem Sn = 1
4 na2 ctg γ

2 , więc ze wzoru (2) objętość wielościanu
A0A1A2 . . . An−1An (którego rzut prostopadły na płaszczyznę Π jest n-kątem
foremnym) dana jest wzorem Wn+1 = 1

12 · h(L2 − h2) · 1
n ctg π

n . Objętość ta
jest największa, gdy h = L√

3 , i wówczas Wn+1 = 1
18

√
3 L3 · 1

n ctg π
n . Mamy więc

twierdzenie:
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Twierdzenie 4. Szkielet A0A1 . . . An o długości L rozpina wielościan
o największej objętości, gdy kolejne boki A0A1, . . . , An−1An leżą na kolejnych
ścinach bocznych prawidłowego graniastosłupa n-kątnego o pionowej krawędzi
A0An = L√

3 i obwodzie podstawy
√

2
3 · L, a każdy z odcinków A0A1, A1A2, . . .,

An−1An tworzy z krawędzią A0An kąt α = arc cos 1√
3 .

Π

B

A

M

Rys. 6

Śrubostożek podwójny. Możemy teraz przejść do rozwiązania naszego
oryginalnego problemu. Z geometrii różniczkowej wiemy, że krzywa przestrzenna
leżąca na powierzchni walca jest linią śrubową wtedy i tylko wtedy, gdy styczna
do niej w każdym jej punkcie tworzy stały kąt z kierunkiem osi walca. Zatem
gdy liczba n będzie rosła nieograniczenie, to prawidłowe graniastosłupy n-kątne
coraz „ściślej” będą przylegać do walca o wysokości BA = L√

3 i promieniu
podstawy L

π
√

6 (rys. 6), a łamana BA1A2 . . . An−1A (której kolejne odcinki
tworzą stały kąt α = arc cos 1√

3 z odcinkiem AB równoległym do osi walca) coraz
dokładniej będzie aproksymować krzywą leżącą na powierzchni bocznej walca,
która jest jednym zwojem linii śrubowej (helisy) o skoku L√

3 .Jeśli na prostokątnym arkuszu papieru
narysujemy prostą, która nie jest
prostopadła do któregokolwiek brzegu,
i nawiniemy ten arkusz na walec
o podstawie kołowej, to narysowana linia
prosta przybierze kształt linii śrubowej.
Gdy środek podstawy walca o promieniu

L

π
√

6
jest środkiem kartezjańskiego

układu współrzędnych (oś walca pokrywa
się z osią 0Z), to linia śrubowa o skoku

L√
3

, leżąca na powierzchni bocznej walca
dana jest równaniami parametrycznymi:
x(t) = L

π
√

6
· cos t, y(t) = L

π
√

6
· sin t,

z(t) = L

2π
√

3
· t, gdzie 0 ⩽ t ⩽ 2π oraz

B = (x(0), y(0), z(0)),
A = (x(2π), y(2π), z(2π)) (rys. 6).

Jeśli punkt M porusza się po linii śrubowej, to odcinki BM oraz AM zakreślają
powierzchnie stożkowe i powstaje bryła śrubostożek podwójny (rys. 6). Ponieważ
lim

n→∞
1
n ctg π

n = 1
π , więc objętość tak powstałego śrubostożka podwójnego jest

równa lim
n→∞

Wn+1 = 1
18π

√
3 L3 ≈ 0,01 · L3.

Ostatecznie otrzymujemy rozwiązanie postawionego problemu:
Twierdzenie 5 (J. Egerváry, 1949). Spośród wszystkich brył rozpiętych na
gładkiej krzywej o długości L największą objętość ma bryła będąca otoczką
wypukłą jednego zwoju linii śrubowej o skoku L√

3 na powierzchni walca kołowego
o promieniu podstawy L

π
√

6 .

„Sir Roger Penrose. Geniusz i jego droga do rzeczywistości”
Książka „Sir Roger Penrose. Geniusz i jego droga
do rzeczywistości”” autorstwa Patchena Barssa to
opowieść o jednym z najoryginalniejszych umysłów
XX wieku, matematyku, fizyku i filozofie. Autor
ukazuje swojego bohatera w gronie wybitnych postaci
świata nauki i sztuki, a zarazem na tle środowiska,
z którego wyrastał. Rodzina Penrose’ów to ludzie
utalentowani, których pasja intelektualna kształtowała
atmosferę domu – choć dzieciństwo Rogera nie było
wolne od trudności w przestrzeni emocjonalnej – to
właśnie w tym świecie rodził się jego niezwykły sposób
myślenia.

Podczas lektury tej biografii czytelnik przenosi się
w fascynujący świat idei, teorii i odkryć. Książkę
czyta się jednym tchem – to dynamiczny strumień
faktów biograficznych, przeplatających się z refleksjami
o nauce, matematyce i naturze poznania. Niekoniecznie
trzeba być znawcą fizyki teoretycznej, aby czerpać
przyjemność z lektury, podążając za bohaterem w jego
„podróżach” po tajemniczych strukturach Wszechświata.
Prawda i piękno to motywy wiodące, siła napędowa
w poszukiwaniach Rogera Penrose’a – to pojęcia, które
łączy w swojej naukowej i filozoficznej refleksji. Sam
uczony mówi o procesie odkrywania w sposób ujmujący
prostotą i szczerością:

„A gdy ulegamy fascynacji jakimś zagadnieniem,
kierujemy się jego wewnętrzną estetyką. Czasami

okazuje się, że to, czym się zajmowaliśmy, można
wykorzystać w jakimś innym obszarze, ale w wielu
przypadkach tak nie jest. To jedna z najwspanialszych
cech matematyki. [. . . ] Często robimy coś bez żadnego
powodu, tylko dlatego, że mamy na to ochotę, i właśnie
dzięki temu dokonuje się postęp, który w przeciwnym
razie nigdy by nie nastąpił” [s. 289].
Współpracownicy Penrose’a wspominają jego
nieprawdopodobny, niemal mistyczny sposób myślenia:
„Odkrycia Penrose’a wyglądają tak, jak gdyby były
dziełem jakiejś nadludzkiej formy życia”. Barss nie
pomija jednak bardziej ludzkich wątków – trudności
w relacjach, napięć emocjonalnych i dylematów, które
towarzyszyły uczonemu w życiu osobistym. To postać
z krwi i kości. . . W książce czytamy o jego ludzkich
ograniczeniach, problemach z kobietą, którą poślubił,
oraz jego „muzami” – wybrankami jego potrzeby
twórczej. Dzięki temu portret Penrose’a zyskuje głębię
i wiarygodność.
„Roger Penrose” to opowieść o człowieku, który
całe życie próbował dotrzeć do skraju ludzkiego
pojmowania rzeczy. Książkę polecam wytrawnym
poszukiwaczom prawdy w fizyce, poszukiwaczom
estetyki w matematyce, a przede wszystkim
wielbicielom emocji związanych z odkrywaniem prawdy
o życiu wybitnych ludzi.

Marzanna WAWRO
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Manewr transferowy Hohmanna:
z niskiej orbity ziemskiej na Marsa
Przemysław BORYS** Wydział Chemiczny, Politechnika Śląska

w Gliwicach
O manewrze Hohmanna słyszał każdy, kto oglądał film lub czytał książkę
Marsjanin. Tym właśnie sposobem odbywały się tamtejsze przeloty między
Ziemią i Marsem. Manewr ten polega na przeniesieniu pojazdu kosmicznego
z jednej orbity kołowej na inną z wykorzystaniem „transferowej” orbity
eliptycznej. Takiej drogi nigdy nie pokonuje się, lecąc w linii prostej i hamując
dopiero u celu – byłoby to marnotrawstwo energii. Jak się zaraz przekonamy,
w manewrze Hohmanna czasami w ogóle nie ma potrzeby hamowania
(w najprostszej wersji tylko się przyspiesza).

O manewrze Hohmanna pisał również
Grzegorz Derfel w ∆8

20. Ciekawemu
Czytelnikowi polecamy zajrzeć do
wspomnianego artykułu, który opisuje
również manewr dwueliptyczny.

r2

r1

∆v1

∆v2

Słońce

W manewrze Hohmanna wykorzystuje się dwie sekwencje włączania silników,
generujące przyrosty prędkości ∆v1 w perycentrum oraz ∆v2 w apocentrum
(rysunek obok). Aby określić wielkości skoków ∆v1 i ∆v2, skorzystamy z zasady
zachowania energii na orbicie:

E = mv2

2 − GMm

r
.

Równanie to szczególnie łatwo jest analizować w apocentrum i perycentrum
orbity eliptycznej – punktach największego zbliżenia do ogniska i największego
oddalenia (aphelium r2 i peryhelium r1 dla ciał krążących wokół Słońca).
Z zasady zachowania energii:

mv2
1

2 − GMm

r1
= mv2

2
2 − GMm

r2
.

Ponadto w tych punktach (na rysunku: punkty, w których zadaje się impulsy
prędkości) prędkość jest prostopadła do promienia, dzięki czemu można łatwo
obliczyć iloczyn wektorowy dla momentu pędu:

mv1r1 = mv2r2.

Z podstawienia powyższego równania do poprzedniego (w celu
wyeliminowania v1):

v2
2

(
1 − r2

2
r2

1

)
= 2GM

(
1
r2

− 1
r1

)
⇒ v2

2 · (r1 − r2)(r1 + r2)
r2

1
= 2GM · r1 − r2

r1r2
.

Ponieważ dla elipsy r1 + r2 = 2a (dwukrotna wielkość półosi wielkiej), po
skróceniu (r1 − r2)/r1 mamy:

v2
2 = GMr1

a r2
= GM(2a − r2)

a r2
= 2GM

r2
− GM

a
.

Korzystając z powyższego równania, możemy wyznaczyć wartość całkowitej
energii ciała na orbicie o danej długości wielkiej półosi:

E = mv2
2

2 − GMm

r2
= GMm

r2
− GMm

2a
− GMm

r2
= −GMm

2a
.

Podstawiając tę wartość do zasady zachowania energii przytoczonej na początku
i skracając masę, uzyskujemy tzw. równanie vis-viva (w języku polskim
tłumaczone niekiedy jako „całka siły żywej”):

(∗) v2 = GM

(
2
r

− 1
a

)
.

Za pomocą tego równania można łatwo znaleźć przyrosty prędkości potrzebne do
zmiany orbity. Jeżeli początkowo jesteśmy na orbicie kołowej, to a = r = r1.
Potem przechodzimy na orbitę eliptyczną, gdzie a = (r1 + r2)/2. W końcu
docieramy do perycentrum elipsy (ew. apocentrum, jeśli planujemy obniżyć
orbitę), gdzie znowu promień równy jest półosi: a = r = r2.
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Transfer z orbity ziemskiej na marsjańską

Policzmy przykładowe przyrosty prędkości podczas transferu na orbitę Marsa
(orbita kołowa o promieniu r2 = 229 mln km) z orbity ziemskiej o promieniu
r1 = 150 mln km). Orbity liczone są wokół Słońca, więc GM⊙ = 1,3 · 1011 km3/s2.
Z równania (∗) mamy:

v1 =
√

1,3 · 1011

106 · 1
150 = 29,4 km/s,

v12(r1) =

√
1,3 · 1011

106

(
2

150 − 2
150 + 229

)
= 32,4 km/s ⇒ ∆v1 = 3,0 km/s,

v12(r2) =

√
1,3 · 1011

106

(
2

229 − 2
150 + 229

)
= 21,2 km/s,

v2 =
√

1,3 · 1011

106 · 1
229 = 23,8 km/s ⇒ ∆v2 = 2,6 km/s,

przy czym v12 to prędkość na orbicie eliptycznej łączącej orbity Ziemi i Marsa.

W praktyce transfer rzadko jest wykonywany z orbity ziemskiej poza polem
grawitacyjnym Ziemi i rzadko wejście na orbitę marsjańską zachodzi daleko
od Marsa. Rozpoczynając misję na niskiej orbicie okołoziemskiej (Low Earth
Orbit – LEO), vLEO = 7,9 km/s, musielibyśmy się po pierwsze wyzwolić z pola
grawitacyjnego Ziemi (M = 5,97 · 1024 kg, rLEO = 6371 km), a po drugie nadać
sondzie prędkość transferową względem Ziemi. Uwzględniając, że dysponujemy
już częścią energii kinetycznej, związanej z ruchem po orbicie LEO, możemy
rozpisać zachowanie energii:

∆E = m(vLEO + ∆v)2

2 − mv2
LEO
2 = GMm

rLEO
− mv2

LEO
2 + m(v12 − v1)2

2 ,

vLEO + ∆v = 11,5 km/s ⇒ ∆v = 3,6 km/s.

Powyższą zależność energetyczną można wyrazić w bardziej typowy sposób,
mianowicie: aby uzyskać prędkość v∞ po uwolnieniu się z pola grawitacyjnego
planety, przy założeniu prędkości ucieczki vII =

√
2GM/R, trzeba nadać

pojazdowi kosmicznemu prędkość:

(∗∗) v =
√

v2
II + v2

∞.

Prędkości mierzymy tu względem planety – energia najpierw jest
wykorzystywana na pokonanie pola grawitacyjnego (w wielkości vII

2),
a pozostała część pozostaje zachowana w postaci energii kinetycznej. Jest
to ten sam wzór, który mamy wyżej dla ∆E. Zaniedbujemy tutaj efekty
oddziaływania ze Słońcem i w tym przybliżeniu zajmujemy się orbitą
hiperboliczną (w odległościach pojedynczych milionów kilometrów od planety
możmy zaniedbać zakrzywienie trajektorii związane z oddziaływaniem ze
Słońcem, co upraszcza analizę!).

Załóżmy teraz, że docieramy w okolice Marsa i zastanawiamy się, jak
skorygować prędkość, aby zostać przez niego przechwyconym i wejść na jego
orbitę. Skorzystamy z równania (∗∗) łączącego prędkość orbitalną z prędkością
ucieczki i prędkością v∞, tym razem dla danej prędkości zbliżenia do planety,
v∞ = v2 − v12(r2) = 2,7 km/s. Prędkość ucieczki z Marsa, którego masa wynosi
M♂ = 6,39 · 1023 kg, a promień r♂ = 3390 km, to:

vII,♂ =
√

2GM♂
r♂

= 5,0 km/s.

W efekcie, po przechwyceniu przez grawitację planety, przy założeniu
maksymalnego zbliżenia aż do odległości r♂, prędkość na orbicie hiperbolicznej
(w przybliżeniu zaniedbującym oddziaływanie ze Słońcem) wyniesie:

Jako pożyteczne ćwiczenie dla
Czytelników proponujemy obliczenie
przyrostu ∆v2 z wykorzystaniem orbit
hiperbolicznych, omówionych w ∆10

25.
Wystarczy wyznaczyć parametr zderzenia
dla minimalnego zbliżenia do samej
powierzchni planety, a następnie
wyznaczyć prędkość mijania planety
z zachowania momentu pędu.

v =
√

5,02 + 2,72 = 5,7 km/s.
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Odejmując od tego wyniku prędkość orbitalną Marsa (3,6 km/s), uzyskujemy
wartość drugiego skoku prędkości:

∆v2 = v − vI,♂ = 2,1 km/s.
W konsekwencji całkowity „budżet delta-v” dla wyprawy na Marsa wynosi:

3,6 + 2,1 = 5,7 km/s.

∆v

Aby bliżej uświadomić sobie związek modelowania wejścia na orbitę z orbitami
hiperbolicznymi, warto spojrzeć na powyższy rysunek, gdzie Mars orbituje po
okręgu, a kołową orbitę przecina elipsa Hohmanna. Pod wpływem grawitacji
Marsa w pobliżu planety elipsa (tak naprawdę w tej skali i elipsa Hohmanna,
i koło orbity Marsa wyglądają jak linia prosta!) ugina się i przypomina lokalnie
hiperbolę. Dzięki impulsowi prędkości z hiperboli wchodzimy na orbitę kołową
wokół Marsa.
Zamiast takich obliczeń łatwiej jest wykorzystać tzw. mapy delta-v – tabele
skoków prędkości niezbędnych do dotarcia z punktu startowego do docelowego.
Na takiej mapie rozpoczynamy sumowanie czynników, np. od orbity LEO na
Ziemi, a kończymy na LMO nad Marsem.
Strefy oddziaływań planet
Mapy delta-v są dość czytelne, ale wątpliwości może wzbudzić pojęcie
„przechwycenia” czy „wejścia w sferę oddziaływania” planety. Sfera
oddziaływania definiowana jest jako miejsce, gdzie pojazd kosmiczny – pomiędzy
planetą a Słońcem (czy ogólniej: pomiędzy mniejszym ciałem niebieskim
a dominującym ciałem niebieskim) – odczuwa zerową siłę wypadkową grawitacji
oraz odśrodkową:

GMm

R2 + mω2(r1 − R) − GM⊙m

(r1 − R)2 = 0,

r1 oznacza tu promień orbity planety, a R to odległość strefy oddziaływania od
planety.
Ponieważ orbitalna prędkość kątowa planety wynika z równowagi siły
odśrodkowej z przyciąganiem Słońca:

ω2r1 = GM⊙

r2
1

.

Jednocześnie różnica dwóch ostatnich członów względem punktu równowagi
w r1 jest mała, i aby uprościć rachunki, można skorzystać z następującego
przybliżenia:

1
(r1 − R)2 ≈ 1

r2
1

− R

[
d

dr1

(
1
r2

1

)]
= 1

r2
1

+ 2 R

r3
1

.

Mamy zatem:
GMm

R2 + GM⊙m

r2
1

− GM⊙m

r3
1

R = GM⊙m

r2
1

+ 2GM⊙m

r3
1

R.

I stąd możemy wyznaczyć promień sfery oddziaływania dla Ziemi:

R = r1
3

√
M

3M⊙
= 1,5 mln km.
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Mapa „delta-v”: https://upload.wikimedia.org/wikipedia/commons/9/93/Solar_system_

delta_v_map.svg
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ktualności (nie tylko) fizyczne
Tysiąc kotów
Ile kotów jest na świecie? Wikipedia podaje szacunkowe liczby między
600 milionów a miliardem, ze Stanami Zjednoczonymi na czele względem
liczby kotów zawłaszczających gospodarstwa domowe, jednak źródła tych
danych pozostają niejasne.
Można pokusić się o mniej poważne pytanie: ilu jest fizyków na świecie? Od
razu wpadamy tutaj w drobną pułapkę, no bo jak dokładnie zdefiniować fizykę
i fizyka. A że jest to sprawa wielkiej wagi, to wiem z własnego doświadczenia,
z posiedzeń komisji habilitacyjnych, które potrafią zaciekle dyskutować, ile fizyki
jest w fizyce.
Załóżmy jednak, że interesuje nas oszacowanie rzędu wielkości liczby fizyków
i namysł, jak zmieniła się ona w ciągu ostatniego stulecia. Znane zdjęcie
z piątej konferencji Solvaya z roku 1927 ukazuje grupę 29 fizyków, z których
siedmioro otrzymało wcześniej lub później Nagrodę Nobla, co stanowi podstawę
publicznego przekonania, że była to wówczas liczba bardzo mała. Jednak
publikacje American Institute of Physics podają tu liczbę kilku tysięcy, opierając
się na liczbie istniejących na uniwersytetach katedr fizyki, z założeniem, że
każda miała na pewno swojego profesora, który zarządzał co najmniej jednym
asystentem.
A dzisiaj? W przeciwieństwie do kotów, dane są trudniejsze do pozyskania,
jednak raz pozyskanymi łatwiej jest zarządzać. Unia Europejska miała
w 2023 roku, według danych Eurostatu, 2,15 miliona naukowców, więc,
przyjmując robocze założenie, że 10% z nich to fizycy, otrzymujemy wynik
215 tysięcy. Udział fizyków w populacji naukowców jest, oczywiście, swego
rodzaju zgadnięciem, polegającym na codziennym doświadczeniu autora,
wspartym jednak przesądami innych osób próbujących odpowiedzieć na
postawione tutaj pytanie.
W przypadku innych krajów możemy wykorzystać dane Global Innovation Index
podające liczbę naukowców na milion mieszkańców. W tym wskaźniku prym
wiedzie Korea Południowa z wynikiem 7980, co przekłada się na 41 tysięcy
fizyków. Na drugim miejscu są Stany Zjednoczone, dla których stosunek ten
wynosi 4450, więc możemy zaryzykować stwierdzenie, że mieszka tam 150 tysięcy
fizyków. Swoją drogą, na Quantum Summit India, który odbył się w lipcu
2025 roku w Bengaluru, Duncan Haldane i David Gross, obaj laureaci Nagrody
Nobla z fizyki, wskazali, że wysoki wynik amerykańskiej nauki opiera się
na silnym drenażu mózgów z innych części świata, zwłaszcza z Indii, które
ze wskaźnikiem 255, zresztą malejącym w czasie, dostarczają światu tylko
37 tysięcy fizyków. W liczbach bezwzględnych przodują Chiny z dość wysokim
stosunkiem na poziomie 1850 i dużą liczbą ludności, co pozwala sądzić, że jest
tam około 260 tysięcy fizyków.
Powtarzając to ćwiczenie dla najludniejszych krajów świata, dochodzimy do
liczby 900 tysięcy, więc przy naszej dokładności można dla lepszego efektu
powiedzieć, że na świecie żyje około miliona fizyków.
Dużo to czy mało? Na pewno wynik ten wskazuje na ogromne zwiększenie
dostępności szkolnictwa wyższego, co w połączeniu ze dwuipółkrotnym wzrostem
liczby ludności w ciągu ostatniego stulecia przełożyło się na wzrost liczby
uniwersytetów. W końcu, przyjęty na świecie model edukacji zakłada, że
moralne prawo do kształcenia studentów wywodzi się z prowadzenia badań
naukowych.
W każdym razie, nie pomyli się zanadto, kto powie, że na jednego fizyka
przypada globalnie jakieś tysiąc kotów. Przy ostrożnym założeniu, że fizyk
jest społecznie co najmniej tak samo użyteczny jak kot, wciąż jesteśmy po
bezpiecznej stronie.

Krzysztof TURZYŃSKI
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Olimpiada Sztucznej Inteligencji
Witold DRZEWAKOWSKI 1,∗,†, Kamil KSIĄŻEK 2,†,
Michał MARCINKOWSKI 3,∗, Paulina TOMASZEWSKA 4,∗,†

Sztuczna inteligencja coraz śmielej wkracza w nasze codzienne życie – modele1Wydział Matematyki, Informatyki
i Mechaniki, Uniwersytet Warszawski

2Wydział Matematyki i Informatyki,
Uniwersytet Jagielloński

3Wydział Matematyki i Informatyki,
Uniwersytet Wrocławski

4Wydział Matematyki i Nauk
Informacyjnych, Politechnika
Warszawska

∗Komitet Główny OAI
†Komitet Merytoryczny OAI

językowe są podstawą działania chatbotów, silniki grające w szachy pomagają
zarówno w szkoleniu początkujących graczy, jak i arcymistrzów, systemy
wnioskowania rozwiązują skomplikowane zadania matematyczne. Za tym
wszystkim stoją różnorodne algorytmy uczenia maszynowego i ogromne ilości
danych. Jak to wszystko działa? Co stoi u podstaw tych systemów? Jak są one
zbudowane? Olimpiada Sztucznej Inteligencji (OAI) została stworzona właśnie
dla osób zainteresowanych tym obszarem wiedzy i technologii.
Co to jest OAI? Olimpiada Sztucznej Inteligencji to ogólnopolskie zawody
adresowane do uczniów szkół ponadpodstawowych i podstawowych. Obecnie
trwa III edycja Olimpiady, kolejna rozpocznie się w roku szkolnym 2026/2027.
Wzorem innych olimpiad, takich jak matematyczna i informatyczna, OAI
składa się z trzech etapów: I etapu zdalnego, II etapu lokalnego oraz III
etapu finałowego. W roku szkolnym 2025/2026 I etap rozpoczął się 1 grudnia
2025 roku i zakończy się 25 stycznia 2026, II etap odbędzie się w dniach
6–8 marca 2026 roku w czterech miastach: Krakowie, Poznaniu, Warszawie
i Wrocławiu. Finał będzie miał miejsce od 17 do 19 kwietnia 2026 roku
w Poznaniu. OAI jest wspierana przez Ministerstwo Edukacji Narodowej. Jej
organizatorem jest Fundacja Edukacji i Rozwoju Sztucznej Inteligencji oraz
wydziały matematyki i informatyki uniwersytetów Jagiellońskeigo, im. Adama
Mickiewicza, Warszawskiego i Wrocławskiego.
Jak wyglądają zadania? Zadania inspirowane są realnymi problemami

Zadanie z grą w trzy kubki wymagało
śledzenia obiektów występujących
w filmie

Halucynacje AI to zjawisko, w którym
sztuczna inteligencja generuje fałszywe
lub nieprawdziwe informacje, prezentując
je jako fakty. Powstają one, ponieważ
modele AI przewidują najbardziej
prawdopodobne odpowiedzi na podstawie
wzorców w danych treningowych, a nie na
prawdziwym zrozumieniu rzeczywistości,
co może prowadzić do zmyślania faktów,
dat, a nawet źródeł.

pojawiającymi się w przemyśle i nauce. Uczestnicy muszą przeanalizować duży
zbiór danych i znaleźć w nim ukryte zależności, tworząc własny model sztucznej
inteligencji, np. sieć neuronową. W poprzednich edycjach zadania dotyczyły
m.in. wykrywania nieprawidłowości w sygnale EKG (ilustrującym pracę serca),
detekcji halucynacji w danych wygenerowanych przez duże modele językowe,
czy predykcji sumy pieniędzy na zdjęciu z monetami. Jedno z zadań związane
było z analizą wideo przedstawiającą grę w trzy kubki. Na filmach kubki były
zamieniane miejscami, a zadaniem było wskazanie, na jakiej pozycji finalnie
znalazł się każdy kubek. Kolejne zadanie dotyczyło ataków na modele AI,
aby „zmusić” je do popełniania błędów. Aby lepiej zilustrować, na czym mogą
polegać zadania, opiszemy bardziej szczegółowo dwa z nich.
• Wykrywanie zaburzeń sygnału EKG (II OAI, 1. etap). W tym zadaniu

uczestnik dostaje zbiór danych zawierający syntetyczne sygnały EKG, czyli
zapis pracy serca w czasie. Część sygnałów EKG jest prawidłowa, a część

Sygnał EKG ze zbioru treningowego

odpowiada wybranym schorzeniom, np. migotaniu przedsionków. Zadaniem
uczestnika jest wyodrębnienie z fragmentów EKG czterech liczbowych
cech sygnału, które pozwolą najlepiej przewidzieć obecność schorzeń.
Dobór cech jest oceniany przez jakość wytrenowanego na ich podstawie
modelu uczenia maszynowego, którego uczestnicy nie mogą zmieniać. Im
lepsze cechy, tym dokładniejsze przewidywania modelu oraz wyższa ocena
rozwiązania. Zadaniem uczestników było odkrycie anomalii, które znajdowały
się tylko w szczególnych fragmentach sygnału. Jedno z rozwiązań polegało
na podzieleniu sygnału EKG na fragmenty i usunięciu z niego odcinków
odpowiadających tzw. zespołowi QRS, reprezentującemu główną aktywność
skurczową serca. Pozostałe fragmenty, odpowiadające sygnałowi pomiędzy
kolejnymi uderzeniami serca, zawierały większość anomalii i były podstawą
dalszej analizy statystycznej. Badano między innymi wartości bezwzględne
różnic między kolejnymi odczytami w czasie, a ostateczne cechy były
konstruowane na podstawie ich odchylenia standardowego, średniej kroczącej,
amplitudy lub innych statystyk. Zaznaczamy, że rozwiązanie nie wymagało
wiedzy medycznej, a całe niezbędne wprowadzenie, włącznie z opisem zespołu
QRS, było przedstawione w treści zadania.
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W powyższym zadaniu nacisk postawiony był na analizę danych wejściowych.
Model nie był modyfikowany przez użytkownika. Nie zawsze jednak tak jest.
Poniżej opiszemy zadanie z finałowego etapu, w którym należało dotrenować
dostarczony model sieci neuronowej.
• Stylizacja tłumaczeń maszynowych (II OAI, 3. etap). Uczestnicy

w ramach zadania dostali wytrenowany już model niewielkich rozmiarów
do tłumaczeń z języka angielskiego na język polski oraz zdania w języku
angielskim zawierające specjalistyczne terminy z dziedziny uczenia
maszynowego. Dla każdego z takich zdań zbiór danych zawierał również
listę występujących w nich specjalistycznych terminów oraz oczekiwane
tłumaczenie tego zdania na język polski. Jednakże w tym tłumaczeniu
terminy specjalistyczne są przetłumaczone inaczej niż dokonałby tego
dostarczony model – stosowane są polskie odpowiedniki, podczas gdy
celem tego zadania było pozostawienie angielskich terminów. Zadanie
to wymagało implementacji pętli do wydajnego dotrenowania modelu
z uwzględnieniem nowoczesnych technik, takich jak zmiana tempa treningu
w ramach kolejnych etapów poprzez zmniejszanie współczynnika uczenia,
z uwzględnieniem fazy „rozgrzewki”. Takie rozwiązanie często nie skutkowało
jednak maksymalną liczbą punktów. Kluczowa była następująca obserwacja:
aby skutecznie naśladować styl tłumaczeń obecny w zbiorze danych, model
musi opanować dwie umiejętności: (1) rozpoznawanie fraz specjalistycznych
oraz (2) odpowiednie tłumaczenie tych fraz. Uczestnicy, którzy to dostrzegli,
wykorzystali dodatkową informację dostępną w danych – listy słów
kluczowych przypisane do każdego zdania. Na ich podstawie oznaczali
w tekście źródłowym (angielskim) frazy specjalistyczne (np. za pomocą
znaczników <...>). Dzięki temu model nie musiał samodzielnie uczyć
się, które wyrażenia wymagają zmiany stylu, a które nie. Jego zadaniem
było jedynie nauczyć się, że frazy oznaczone należy tłumaczyć zgodnie ze
specyficznym stylem, a w tłumaczeniu pomijać same znaczniki.

Wiele zadań wymaga obliczeń na kartach graficznych
(GPU), do których zapewniamy dostęp podczas etapów
stacjonarnych. Zadania są w pełni automatycznie
oceniane na specjalnie przygotowanej infrastrukturze
systemu sprawdzającego.

Dlaczego warto? Poza satysfakcją i świetną przygodą
Olimpiada to szansa na rozwinięcie bardzo przydatnych
umiejętności oraz możliwość spotkania rówieśników
z całej Polski zainteresowanych sztuczną inteligencją.
Na etapy lokalne i finał zapraszamy naszych partnerów
i firmy wspierające Olimpiadę – jest wtedy okazja do
uczestniczenia w ciekawych wykładach i zobaczenia, jak
AI jest stosowana w praktyce. Finaliści mają ułatwiony
lub wolny wstęp na coraz większą liczbę kierunków
na polskich uczelniach. Dla najlepszych uczestników
organizujemy obóz naukowy, którego poprzednie edycje
odbywały się w Krzyżowej i Polanicy-Zdroju. Uczestnicy
poznają tam bardziej zaawansowane zagadnienia, takie
jak modele dyfuzyjne w wizji komputerowej, sieci typu
transformer czy metody trenowania modeli językowych.
Co roku Olimpiada wyłania polską reprezentację
na zawody międzynarodowe. Dotychczas odbyły się
dwie edycje Międzynarodowej Olimpiady Sztucznej
Inteligencji (ioai-official.org). W obu tych
olimpiadach nasza reprezentacja osiągnęła wspaniałe
sukcesy. Na ostatniej międzynarodowej olimpiadzie
w Pekinie polska reprezentacja zdobyła 7 medali
(3 złote, 3 srebrne, 1 brązowy), zajmując w nieoficjalnej
klasyfikacji medalowej 2 miejsce na świecie.

Jak zacząć? Wszystkie potrzebne informacje,
materiały przygotowujące do Olimpiady, a także
zadania z poprzednich edycji znajdują się na stronie
oai.edu.pl oraz w mediach społecznościowych
Olimpiady. W ramach Olimpiady prowadzimy również
różnorodne szkolenia. Przed I etapem organizujemy
cykl wykładów wprowadzających, podczas których
od podstaw przedstawiamy zagadnienia z zakresu
uczenia maszynowego. Omawiamy m.in. podstawy
uczenia maszynowego, elementy wizji komputerowej
i przetwarzania języka naturalnego. Wprowadzamy
uczestników do programowania w Pythonie, trenujemy
pierwsze sieci neuronowe, pokazujemy algorytmy
klasteryzacji, sieci konwolucyjne do rozpoznawania
obrazów oraz wektory zanurzeń słów Word2Vec.
Warto podkreślić, że dla większości naszych uczestników
start w Olimpiadzie był ich pierwszą przygodą z AI –
jesteśmy jednak przekonani, że jest to dopiero początek
ich fascynującej podróży.
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Liga zadaniowa Wydziału Matematyki, Informatyki i Mechaniki,
Zadania z matematyki nr 913, 914Klub 44 M

Termin nadsyłania rozwiązań: 31 III 2026

Czołówka ligi zadaniowej Klub 44 M
po uwzględnieniu ocen rozwiązań zadań

903 (W T = 1,45) i 904 (W T = 1,36)
z numeru 6/2025

Jerzy Cisło Wrocław 46,09
Szymon Kitowski 43,92
Barbara Mroczek 43,05
Andrzej Daniluk Warszawa 40,76
Mikołaj Znamierowski 40,68
Marian Łupieżowiec Gliwice 38,54
Krzysztof Kamiński Pabianice 38,09
Roksana Słowik 37,51
Michał Adamaszek Kopenhaga 37,30
Stanisław Bednarek Łódź 37,24

Moment godny uwagi: pan Jerzy Cisło –
44 p. po raz osiemnasty!

Redaguje Marcin E. KUCZMA

913. Niech m będzie liczbą naturalną nieparzystą. Wyznaczyć największą
możliwą liczność zbioru M , zawartego w przedziale [−m, m], złożonego z liczb
całkowitych, w którym każda trójka różnych liczb ma sumę różną od zera.

914. Znaleźć wszystkie pary a, b liczb rzeczywistych różnych od zera, dla których
funkcja f : R → R dana wzorem f(x) = |sin(ax)| + |cos(bx)| jest okresowa.

Zadanie 914 zaproponował pan Witold Bednarek z Łodzi.

Rozwiązania zadań z numeru 9/2025

Przypominamy treść zadań:
905. Niech f(x) = x3(x2 + 1)−1. Wyznaczyć wszystkie całkowite dodatnie wartości sumy
f(a) + f(b) + f(c) dla dowolnych liczb całkowitych a, b, c.

906. W przestrzeni (trójwymiarowej) dana jest parabola P . Niech R będzie zbiorem wszystkich
punktów, będących wierzchołkami stożków obrotowych, na których leży P [przez stożek obrotowy
rozumiemy tu powierzchnię powstałą przez obrót prostej wokół przecinającej ją (nie prostopadle)
innej prostej (osi obrotu)].

Udowodnić, że zbiór R także jest parabolą oraz wyjaśnić, jak są usytuowane jej wierzchołek i ognisko
względem wierzchołka i ogniska paraboli P . [Wierzchołek paraboli to punkt jej przecięcia z osią
symetrii; ognisko to punkt (w jej płaszczyźnie) określony przez własność: każdy punkt paraboli jest
jednakowo odległy od ogniska i od pewnej prostej (zwanej kierownicą)].

905. Z uwagi na równość f(x) = x − g(x), gdzie
g(x) = x(x2 + 1)−1, warunek zadania jest (dla liczb
całkowitych a, b, c ⩾ 1) równoważny temu, by suma
g(a) + g(b) + g(c) była liczbą całkowitą. W przedziale
[1, ∞) funkcja g jest malejąca. Jej wartości dla argumentów
1, 2, 3, 4, 5, . . . wynoszą, kolejno:

1
2 , 2

5 , 3
10 , 4

17 , 5
26 , . . . ,

więc jedyną możliwą całkowitą wartością wypisanej sumy
jest g(a) + g(b) + g(c) = 1. Przyjmijmy (b.s.o.), że a ⩽ b ⩽ c ;
wówczas g(a) ⩾ g(b) ⩾ g(c) oraz g(a) ⩾ 1

3 , czyli a = 1 lub
a = 2. Dalej, musi być g(b) ⩾ 1

2 (1 − g(a)). Dla a = 1 oraz
dla a = 2 to daje, odpowiednio, g(b) ⩾ 1

4 oraz g(b) ⩾ 3
10 ;

w obu przypadkach to oznacza, że b ⩽ 3.

Pozostaje sprawdzić, czy dla uzyskanych par (a, b)
( = (1, 1), (1, 2), (1, 3), (2, 2), (2, 3)) różnica
1 − (g(a) + g(b)) jest możliwą wartością g(c).
Jedynie dla a = 2, b = 3 tak jest; wtedy także
c = 3 i g(2) + g(3) + g(3) = 2

5 + 3
10 + 3

10 = 1, zaś
f(2) + f(3) + f(3) = (2 + 3 + 3) − 1 = 7. To jedyna
możliwa wartość sumy f(a) + f(b) + f(c).

906. Ustalmy kartezjański układ współrzędnych Oxyz,
w którym parabola P jest dana równaniem y = x2,
z = 0 (b.s.o, bo wszystkie parabole są podobne). Ma
ona wierzchołek w = (0, 0, 0) i ognisko f = (0, 1

4 , 0)
(kierownicą jest prosta x = z = 0, y = − 1

4 ). Weźmy dowolny
stożek obrotowy C, na którym leży P . Przyjmijmy, że
wierzchołkiem stożka C jest punkt p0 = (x0, y0, z0).
Oznaczmy przez φ miarę kąta ostrego między jego osią
obrotu i tworzącą i niech c = cos φ (zatem 0 < c < 1).
Niech u = (u, v, w) będzie wersorem kierunkowym osi
obrotu, zorientowanym tak, by v > 0 (wersor to wektor
o długości 1).

Dowolnie wybrany punkt przestrzeni p = (x, y, z) leży na
stożku C wtedy i tylko wtedy, gdy kąt między wektorami
p − p0 oraz u ma miarę φ lub π − φ; czyli gdy jego kosinus
(dany znanym wzorem u .(p−p0)

∥u∥·∥p−p0∥ ) jest równy ±c. Skoro
∥u∥ = 1, warunek ten po rozpisaniu na współrzędne
przybiera postać

(1) u(x − x0) + v(y − y0) + w(z − z0)
= ±c

√
(x − x0)2 + (y − y0)2 + (z − z0)2.

Jest to więc równanie powierzchni stożka C. Parabola P leży
na niej, jeśli po podstawieniu y = x2, z = 0 równanie (1)
jest spełnione dla każdej liczby rzeczywistej x. Przez
podniesienie stronami do kwadratu wnosimy, że zawieranie
P ⊂ C ma miejsce wtedy i tylko wtedy, gdy

(2)
(
u(x − x0) + v(x2 − y0) + w(−z0)

)2

= c2(
(x − x0)2 + (x2 − y0)2 + z2

0
)

dla x ∈ R.

To równość dwóch wielomianów zmiennej x, czwartego
stopnia. Przyrównując współczynniki przy x4 po lewej
i prawej stronie, a następnie współczynniki przy x3,
dostajemy równości v2 = c2, 2uv = 0; czyli (pamiętając, że
v > 0, c > 0): v = c, u = 0. Wstawiamy te wartości do (2)
i po redukcji dostajemy równanie
(3) −2cwz0(x2 − y0) + w2z2

0 = c2(x − x0)2 + z2
0c2.

Kolejne przyrównanie współczynników, tym razem przy
x2 oraz x1, pokazuje, że −2cwz0 = c2, −2c2x0 = 0, skąd
wz0 = − 1

2 c, x0 = 0. Równanie (3) redukuje się do postaci
−c2y0 +

(
− 1

2 c
)2 = c2z2

0 , czyli y0 = 1
4 − z2

0 .

Zważywszy, że stożek C (zawierający parabolę P ) był
wybrany dowolnie, więc jego wierzchołek był dowolnym
punktem zbioru R, widzimy, że zbiór R jest opisany
równaniami

x = 0, y = 1
4 − z2.

Jest zatem parabolą, leżącą w płaszczyźnie x = 0,
izometryczną z parabolą P . Jej wierzchołkiem jest punkt
w̃ = (0, 1

4 , 0), a ogniskiem punkt f̃ = (0, 0, 0) (obraz ogniska
paraboli P w tej izometrii). Pierwszy z nich pokrywa się
z ogniskiem paraboli P , drugi z jej wierzchołkiem: w̃ = f ,
f̃ = w. To właśnie usytuowanie, o które chodziło w zadaniu.

[Autor zadania, Janusz Fiett, zwrócił uwagę na artykuł
Stożkowe (w ∆12

13), w którym jest opisana własność
pozwalająca uprościć rozwiązanie: sfera wpisana w stożek,
styczna do płaszczyzny przecinającej jego powierzchnię
wzdłuż paraboli, ma punkt styczności z tą płaszczyzną
będący ogniskiem tej paraboli. Zachęcamy Czytelników
do zapoznania się z tym artykułem i do dopracowania
rozwiązania tą metodą.]
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810. Gładki, jednorodny sznurek o długości l i masie m przerzucony jest przez
niewielki nieruchomy blok tak, że w chwili początkowej pozostaje w równowadze,
a po lekkim przesunięciu zaczyna ześlizgiwać się z bloku. Znaleźć siłę nacisku
sznurka na blok w chwili, gdy jego długość z jednej strony wynosi l/3.

811. Naładowany kondensator płaski znajduje się w jednorodnym polu
magnetycznym, którego linie są prostopadłe do płaszczyzn okładek. Odległość
między okładkami wynosi d, indukcja pola magnetycznego B. Wewnątrz
kondensatora, koło ujemnie naładowanej okładki znajduje się źródło powolnych
elektronów wysyłanych w różnych kierunkach. Jakie musi być napięcie między
okładkami, aby elektrony ogniskowały się z możliwie najlepszą dokładnością
na dodatnio naładowanej okładce? Oddziaływanie między elektronami
zaniedbujemy.

W treści zadania 803 w wydrukowanej
wersji numeru wrześniowego pojawił się
oczywisty błąd – ładunek kuli
nienaładowanej nie mógł zmaleć
dwukrotnie, bo wynosił zero.

q1=Q−q2 q2
L

I

Rozwiązania zadań z numeru 9/2025

Przypominamy treść zadań:

802. Podróżny stał obok początku wagonu z numerem porządkowym k. Pociąg ruszył z miejsca,
po czym okazało się, że wagon o numerze m mijał pasażera przez t sekund. Ile czasu przejeżdżał
obok tego pasażera wagon o numerze n? Pociąg poruszał się ruchem jednostajnie przyspieszonym,
długości wagonów są jednakowe, odległości między wagonami zaniedbywalne. Podróżny nie poruszał
się względem peronu.

803. Dwie metalowe kule o promieniach R znajdują się w bardzo dużej odległości od siebie
i połączone są cienkim przewodnikiem, w którego rozcięcie włączona jest cewka o współczynniku
samoindukcji L. W chwili początkowej jedna z tych kul naładowana jest ładunkiem Q, druga
nienaładowana. Po jakim czasie ładunek kuli naładowanej zmaleje dwukrotnie?

802. Oznaczmy przez ∆ti czas, w którym i-ty wagon
przejeżdża obok podróżnego (i ⩾ k). Wtedy

(1) l = a∆t2
k

2 ⇒ ∆tk =
√

2l

a
,

gdzie a jest przyspieszeniem pociągu, l długością wagonu.
Zgodnie z treścią zadania
(2) ∆tm = t.

Oznaczmy przez ti czas, w którym przejechały obok
podróżnego wagony, zaczynając od numeru k, a kończąc
na numerze i. Zachodzą związki:
(3) ∆ti = ti − ti−1.

W czasie ti obok podróżnego przejechało i − k + 1 wagonów,
zatem

(4) (i + 1 − k)l = at2
i

2 ⇒ ti =

√
2l(i + 1 − k)

a
,

stąd zgodnie z (1)
ti = ∆tk

√
i + 1 − k, ti−1 = ∆tk

√
i − k.

Uwzględniając (2) i (3):

∆tm = ∆tk

(√
m + 1 − k −

√
m − k

)
⇒ ∆tk = t√

m + 1 − k −
√

m − k
.

Szukany czas wynosi:

∆tn = t

√
n + 1 − k −

√
n − k√

m + 1 − k −
√

m − k
.

803. Oznaczmy przez q2 ładunek, który przeszedł do chwili t
na kulę nienaładowaną (rys.), ładunek na pierwszej kuli
wynosi w tym momencie q1 = Q − q2, a napięcie na cewce

U = ϕ1 − ϕ2 = Q − q2

4πε0R
− q2

4πε0R
= Q − 2q2

4πε0R
.

Natężenie prądu w cewce I = dq1
dt

= − dq2
dt

zmienia się zgodnie
z wzorem

U = −L
dI

dt
⇒ Q − 2q2

4πε0R
= L

d2q2

dt2 .

Wprowadzając nową zmienną q = Q
2 − q2, otrzymujemy:

d2q

dt2 + q

2πε0RL
= 0.

Jest to równanie oscylatora harmonicznego z warunkami
początkowymi

q(0) = Q

2 , I(0) = 0.

Częstość drgań wynosi ω =
√

1
2πε0RL

, okres drgań

T = 2π
√

2πε0RL. Ładunek na pierwszej sferze q1 = Q
2 + q

różni się od q tylko stałą, czyli drga z takim samym okresem.
Zmaleje więc dwukrotnie po czasie

τ = T

4 = π

2
√

2πε0RL.

Po tym czasie ładunki na obu sferach wyrównają się do
wartości Q

2 , a napięcie między sferami spadnie do zera.

Skrót regulaminu
Każdy może nadsyłać rozwiązania zadań z numeru n w terminie
do końca miesiąca n + 2. Szkice rozwiązań zamieszczamy
w numerze n + 4. Można nadsyłać rozwiązania czterech, trzech,
dwóch lub jednego zadania (każde na oddzielnej kartce), można to
robić co miesiąc lub z dowolnymi przerwami. Rozwiązania zadań
z matematyki i z fizyki należy przesyłać w oddzielnych kopertach,
umieszczając na kopercie dopisek: Klub 44 M lub Klub 44 F.
Można je przesyłać również pocztą elektroniczną pod adresem
delta@mimuw.edu.pl (preferujemy pliki pdf). Oceniamy zadania
w skali od 0 do 1 z dokładnością do 0,1. Ocenę mnożymy przez

współczynnik trudności danego zadania: W T = 4 − 3S/N , przy czym
S oznacza sumę ocen za rozwiązania tego zadania, a N – liczbę
osób, które nadesłały rozwiązanie choćby jednego zadania
z danego numeru w danej konkurencji (M lub F) – i tyle punktów
otrzymuje nadsyłający. Po zgromadzeniu 44 punktów, w dowolnym
czasie i w którejkolwiek z dwóch konkurencji (M lub F), zostaje
on członkiem Klubu 44, a nadwyżka punktów jest zaliczana
do ponownego udziału. Trzykrotne członkostwo – to tytuł Weterana.
Szczegółowy regulamin został wydrukowany w numerze 2/2002 oraz
znajduje się na stronie deltami.edu.pl.
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Prosto z nieba: Co było pierwsze: galaktyka czy czarna dziura?

Już starożytni filozofowie głowili się nad pytaniem: co było pierwsze, jajko czy
kura? Astronomowie od jakiegoś czasu poszukują rozwiązania podobnej zagadki.O problemie jajka i kury można

przeczytać również w ∆4
24 Zastąpmy tylko kurę galaktyką, a jajko supermasywną czarną dziurą. Pytanie

brzmi: czy jako pierwsza powstaje galaktyka gwiazd, a dopiero potem jedna
z tych gwiazd wybucha jako supernowa, pozostawiając po sobie czarną dziurę
w centrum? Czy może to galaktyki gwiazd powstają „wokół” istniejącej już
wcześniej supermasywnej czarnej dziury?

Zacznijmy od tego, co wiemy. We współczesnym Wszechświecie prawie
każda duża galaktyka, w tym nasza Droga Mleczna, ma w swoim centrum
supermasywną czarną dziurę o masie od setek tysięcy do kilku miliardów
razy większej od masy Słońca. Wiemy też, że masy tych czarnych dziur są

Supermasywna czarna dziura w centrum
Drogi Mlecznej ma masę 4 miliony razy
większą od Słońca – jest więc stosunkowo
niewielka w porównaniu
z supermasywnymi czarnymi dziurami
występującymi w niektórych innych
galaktykach. Na przykład czarna dziura
w centrum galaktyki Holmberg 15A ma
masę co najmniej 40 miliardów mas
Słońca.

związane z masą galaktyki, w której się znajdują. Im większa i masywniejsza jest
galaktyka, tym masywniejsza jest supermasywna czarna dziura w jej centrum.
Naukowcy interpretują to jako dowód na to, że obecnie oba te obiekty ewoluują
razem. Ale czy tak było zawsze?

Aby to sprawdzić, musimy zajrzeć w przeszłość
Wszechświata do momentu, gdy tworzyły się pierwsze
galaktyki. Na szczęście możemy to robić za pomocą
teleskopów, ponieważ światło podróżuje przez
rozszerzający się Wszechświat ze skończoną prędkością.
Gdy więc obserwujemy odległe galaktyki, to widzimy
je takimi, jakie były miliardy lat temu. Absolutnym
rekordzistą w obserwacjach odległych galaktyk jest
oczywiście Kosmiczny Teleskop Jamesa Webba, którego
obserwacje i tym razem wykorzystano.
Grupa badawcza pod kierunkiem Sophii Geris z Kavli
Institute for Cosmology, University of Cambridge,
opublikowała w listopadzie 2025 roku wyniki obserwacji,
które wykazują, że nawet najmniejsze czarne dziury,
jakie jesteśmy w stanie obserwować, znajdujące się
w centrach najodleglejszych galaktyk są wciąż. . . zbyt
masywne w stosunku do masy galaktyk, w których się
znajdują (patrz wykres).

Wykres zależności masy supermasywnej czarnej dziury od masy
galaktyki. Różne symbole przedstawiają pomiary w różnych
momentach istnienia Wszechświata. W szczególności trójkąty
przedstawiają pomiary we współczesnym Wszechświecie, a kwadraty
w odległym (czyli młodym) Wszechświecie. Punkty zaznaczone
elipsą pokazują najnowsze pomiary mas czarnych dziur odległego
Wszechświata. Są one zdecydowanie większe niż przewidywania
modelu zaznaczone żółtą linią. Źródło: Sophia Geris et al. (2025)

Wyjaśnień tego stanu rzeczy może być oczywiście kilka.
Pierwsze wytłumaczenie związane jest z niepewnościami
pomiarowymi. Możliwe jest, że obserwujemy tylko
szczególnie jasne obiekty (bo tylko ich światło jesteśmy

w stanie zarejestrować). Drugie wytłumaczenie jest
zdecydowanie bardziej ekscytujące – czarne dziury
we wczesnym Wszechświecie mają tak duże masy
w stosunku do mas ich galaktyk, ponieważ powstały
jako pierwsze!

Czyżbyśmy zatem znaleźli odpowiedź? Otóż nie do
końca, pojawia się kolejne pytanie: jak te ogromne,
supermasywne czarne dziury powstały w tak
krótkim czasie? Jak dotąd jedynym potwierdzonym
obserwacyjnie procesem, podczas którego powstają
czarne dziury, jest wybuch supernowej. Kiedy gwiazda
o masie ponad 20 razy większej od Słońca wyczerpie
swoje paliwo, jej jądro zapada się, tworząc czarną
dziurę. Tak powstałe czarne dziury są jednak malutkie
w porównaniu do supermasywnych czarnych dziur
(te pierwsze mają masy kilku mas Słońca, a te drugie
nawet miliardy mas Słońca). Wiemy, że czarne dziury
mogą „rosnąć” i przybierać na masie, pochłaniając
otaczającą je materię lub łącząc się z innymi pobliskimi
czarnymi dziurami. Jednak proces wzrostu trwa
miliardy lat i maksymalne tempo, w jakim czarna
dziura może przybierać na wadze, jest fizycznie
ograniczone. Nie mamy więc na razie wytłumaczenia
na istnienie supermasywnych czarnych dziur we
wczesnym Wszechświecie. Jest oczywiście kilka hipotez.
Jedna z nich zakłada, że czarne dziury we wczesnym
Wszechświecie mogły powstać bezpośrednio w wyniku
zapadnięcia się masywnych chmur gazu, bez udziału
gwiazd. W tym momencie trwają poszukiwania
dowodów obserwacyjnych.

Co więc było pierwsze? Galaktyka czy supermasywna
czarna dziura? Prawdopodobnie czarna dziura. Ale nie
wiemy na pewno. Dam znać, gdy coś się zmieni.
Napisane na podstawie publikacji: Sophia Geris et al. (2025)
“JADES reveals a large population of low mass black holes at high
redshift”, Monthly Notices of the Royal Astronomical Society,
https://doi.org/10.1093/mnras/staf1979.

Anna DURKALEC
Zakład Astrofizyki, Departament Badań Podstawowych,

Narodowe Centrum Badań Jądrowych
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Niebo w styczniu
Styczeń zastanie Słońce w gwiazdozbiorze Strzelca. Powoli zwiększa ono
wysokość górowania nad horyzontem. Dopiero jednak od trzeciej dekady
miesiąca wędrówka Słońca na północ przyspieszy, gdy przetnie równoleżnik
−20◦ deklinacji. Niewiele wcześniej Słońce wejdzie do gwiazdozbioru Koziorożca,
gdzie pozostanie do połowy lutego.

Początek miesiąca rozświetli blask Księżyca, gdyż Srebrny Glob 3 stycznia
przejdzie przez pełnię. Niestety oznacza to, że promieniujące w tym samym
czasie Kwadrantydy są niewidoczne. W Nowy Rok Księżyc w fazie 96% spotka
się z El Nath, drugą co do jasności gwiazdą Byka, podczas pełni natomiast
przejdzie w połowie drogi między Polluksem, najjaśniejszą gwiazdą Bliźniąt,
a Jowiszem. Okolice Księżyca w pełni wraz z nim są w opozycji do Słońca.
Faktyczna opozycja największej planety Układu Słonecznego przypada tydzień
po tym spotkaniu. W tym roku jest to średnia opozycja tej planety. Jowisz
pojaśnieje do −2,7m, a jego tarcza urośnie do 47′′. Planeta porusza się ruchem
wstecznym i 19 stycznia przejdzie mniej niż 0,5◦ od świecącej z jasnością 3,5m

gwiazdy Wasat (δ Gem).

Początek stycznia tego roku to szczególny moment
również dlatego, że 6 dnia miesiąca Wenus przechodzi
przez koniunkcję górną ze Słońcem, a 9 to samo czyni
Mars. A zatem przy pełni Księżyca Mars, Wenus,
Słońce, Ziemia, Księżyc i Jowisz ustawią się w kosmosie
prawie na jednej linii. Niedaleko niej znajdzie się także
Merkury, ale ten koniunkcję górną ze Słońcem osiągnie
21 stycznia. Kolejne dwa dni później w koniunkcji ze
Słońcem znajdzie się planeta karłowata Pluton.
Księżyc natomiast po spotkaniu z Jowiszem powędruje
dalej i 6 stycznia wieczorem wzejdzie 2◦ od Regulusa,
najjaśniejszej gwiazdy Lwa, zmniejszając przy tym
fazę do 85%. Po południu 10 stycznia przypada
ostatnia kwadra Srebrnego Globu, który pokaże się
nad widnokręgiem już kolejnej doby w towarzystwie
świecącej 2,5◦ nad nim Spiki, najjaśniejszej gwiazdy
w Pannie.
Na porannym niebie naturalny satelita Ziemi pozostanie
do połowy miesiąca, znikając w brzasku Słońca już
trzy dni przed przypadającym 18 stycznia nowiem.
Wynika to z tego, że Srebrny Glob przebywa wtedy pod
ekliptyką, której nachylenie do porannego widnokręgu
od początku roku się pogarsza. W tym czasie warto
wspomnieć o jego spotkaniu z Antaresem w dniach
14 i 15 stycznia, gdy jego bardzo cienki sierp w fazie
najpierw 19%, a następnie 12% zbliży się za każdym
razem na około 6◦ do najjaśniejszej gwiazdy Skorpiona.
W trzeciej dekadzie stycznia ekliptyka tworzy duży kąt
z widnokręgiem o zmierzchu, stąd po nowiu Księżyc
rozgości się na wieczornym niebie. 23 stycznia jego faza
urośnie do 23%, a jego tarcza pokaże się 5◦ nad parą
planet Saturn–Neptun. W styczniu obie planety kierują
się już na północny wschód i do końca miesiąca dystans
między nimi spadnie do poniżej 2◦. Jasność Saturna
zmniejszy się do +1,1m, przy średnicy tarczy 17′′. Blask
Neptuna wynosi +7,9m. 19 stycznia rano naszego czasu
Saturn przejdzie mniej niż 1′ od gwiazdy 24 Psc. Do
zapadnięcia ciemności dystans między tymi ciałami
niebieskimi urośnie do 100′. 9 stycznia od godziny 17:45
i 25 stycznia od 17:30 posiadacze większych teleskopów

z powiększeniem ponad 100 razy mogą pokusić się
o dostrzeżenie Tytana na tarczy Saturna.

Dobę później Srebrny Glob zwiększy fazę do 33%.
Tego wieczora zakryje on gwiazdę 4. wielkości δ Psc.
Może ktoś pamięta, że w latach 2015–2017 niedaleko
tej gwiazdy i sąsiadującej z nią świecącej z podobną
doń jasnością ε Psc swoje pętle na niebie kreśliła
planeta Uran. Polska znajdzie się na południowej
granicy zjawiska i na południe od linii mniej więcej
Biała Podlaska–Bielsko-Biała do zakrycia nie dojdzie.
Dodatkowo zjawisko zacznie się przy zachodzącym
Słońcu, a w południowo-zachodniej części Polski nawet
tuż przed jego zachodem. A zatem widoczne jest tylko
odkrycie δ Psc, które nastąpi około godziny 15:50,
w zależności od położenia obserwatora. W zachodniej
Polsce – trochę wcześniej, we wschodniej – trochę
później. Pechowo, lepiej będzie widoczne odkrycie, do
którego dojdzie przy jasnym brzegu księżycowej tarczy,
co jest trudniejsze do obserwowania.

26 stycznia Księżyc przejdzie przez I kwadrę, a dobę
później wejdzie do gwiazdozbioru Byka i zakryje
Plejady. Tym razem zjawisko jest dobrze widoczne
w naszym kraju przed północą, ale na polskim
niebie Srebrny Glob zakryje tylko cztery jasne
gwiazdy z północno-zachodniego krańca gromady:
18, 19 (Taygeta), 20 (Maia) i 21 (Sterope) Tauri. Przy
czym Maia zniknie za księżycową tarczą na północny
wschód od linii mniej więcej Darłowo–Hajnówka. Gdzieś
na tej trasie można polować na szczególnie atrakcyjne
zakrycie brzegowe tej gwiazdy, gdy wielokrotnie
pojawia się ona i gaśnie w miarę przechodzenia między
zagłębieniami i wybrzuszeniami profilu księżycowej
tarczy. Zakrycie Plejad potrwa od około godziny 22:20
do 23:45.

W ostatnich dniach stycznia Srebrny Glob stopniowo
zwiększy fazę prawie do pełni, spotykając się najpierw
ponownie z El Nath, 29 dnia miesiąca, a następnie
z Jowiszem i Polluksem 30 i 31 stycznia.

Ariel MAJCHER
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Rozwiązania zadań ze strony 5

Rozwiązanie zadania M 1840.
Oznaczmy przez a, b i c pierwiastki wielomianu. Wtedy

x3 + px2 + qx + r = (x − a)(x − b)(x − c).
Wstawiając x = 1, mamy

1 + p + q + r = (1 − a)(1 − b)(1 − c).
Każda z liczb a, b i c leży w przedziale (0, 2), zatem każda z liczb
1 − a, 1 − b, 1 − c leży ściśle pomiędzy w przedziale (−1,1). Wynika
stąd, że iloczyn (1 − a)(1 − b)(1 − c) również leży w przedziale
(−1, 1). Zatem

p + q + r = (1 − a)(1 − b)(1 − c) − 1
leży w przedziale (−2, 0).

Rozwiązanie zadania M 1841.
Zauważmy, że dla dowolnej liczby całkowitej k ⩾ 1 mamy
nwd(n, n + k) ⩽ k, gdyż jeśli liczba pierwsza p dzieli n i n + k,
to dzieli również ich różnicę k. Wobec tego skoro nwd(n, n + 1) = 1
i nwd(n, n + k) rośnie dla k = 1, 2, . . . , 35, to nwd(n, n + k) = k dla
k = 1, 2, . . . , 35. W szczególności oznacza to, że wszystkie liczby
1, 2, . . . , 35 dzielą n, więc 36 = 4 · 9 również dzieli n, a zatem

nwd(n, n + 36) = 36 > 35 = nwd(n, n + 35).

Rozwiązanie zadania M 1842.
Zwycięską strategię ma gracz drugi.

Pierwszego gracza oznaczmy przez A, drugiego przez B. Opiszemy
teraz strategię wygrywającą dla B. Przypuśćmy, że A zjada
kostkę wymiaru k, pozostawiając trapez o bokach k, p − k, p,

p − k. Niech a = max(k, p − k), b = min(k, p − k). Ponieważ
nwd(a, b) = nwd(k, p − k) = 1, więc a ̸= b. Gracz B zjada zatem
trójkąt o boku p − k, pozostawiając równoległobok o wymiarach a

na b. Teraz rozpatrzmy dwa przypadki:

• Załóżmy, że A zjada kawałek o wymiarach mniejszych niż b,
wtedy B zjada kawałek symetryczny względem środka
równoległoboku i wygrywa, gdyż A w tym momencie nie ma
ruchu.

• Jeśli zaś A zjada trójkąt o boku b, pozostawia trapez o bokach
a − b, b, a, b, gdzie znowu nwd(a − b, b) = nwd(a, b) = 1.

Gracz B, kontynuując swoją strategię, doprowadzi do sytuacji,
w której a = b = 1 (gdyż nwd(a, b) = 1), co oznacza, że po
ruchu A pozostaje ostatnia kostka, stąd B wygrywa.

k

a b

Pytanie: Który z graczy ma wygrywającą strategię, jeśli bok
czekolady jest liczbą złożoną?

Rozwiązanie zadania F 1135.
Rozważamy cząstkę wyrzuconą pionowo w górę z powierzchni
Ziemi z prędkością ucieczki. Pomijamy opór powietrza. Zasada
zachowania energii daje:

E = 1
2

mv2 −
GMm

r
= 0 ⇒ v(r) =

√
2GM

r
.

Podstawiamy GM = gR2, gdzie g to przyspieszenie ziemskie na
powierzchni, a R to promień Ziemi:

v(r) =

√
2gR2

r
.

Aby obliczyć czas, jaki zajmuje cząstce osiągnięcie wysokości
h, zauważamy, że prędkość nie jest stała – zmienia się wraz
z odległością od środka Ziemi. Nie możemy więc użyć prostego
wzoru t = s

v
, ponieważ nie ma jednej prędkości dla całej drogi.

Zamiast tego dzielimy ruch na nieskończenie małe odcinki drogi
dr, w których prędkość v(r) można uznać za prawie stałą. Dla
każdego takiego odcinka czas przebycia wynosi właśnie dt = dr

v(r) .
Sumując te małe czasy dla wszystkich odcinków od r = R do
r = R + h, otrzymujemy całkowity czas ruchu jako właśnie całkę:

t =

R+h∫
R

dr

v(r)
=

R+h∫
R

dr√
2gR2

r

= 1√
2gR2

R+h∫
R

√
r dr

= 1√
2gR2

·
[2

3
r3/2

]R+h

R
= 2

3
√

2gR2

(
(R + h)3/2 − R3/2

)
Zauważmy, że (R + h)3/2 = R3/2

(
1 + h

R

)3/2, więc:

t = 1
3

√
2R

g

[(
1 + h

R

)3/2
− 1

]
.

Rozwiązanie zadania F 1136.
Przeanalizujmy sytuację wypływu wody z kranu (zobacz
rysunek na s. 5). Na skutek działania siły grawitacji strumień
wody przyspiesza w miarę oddalania się od wylotu. Zgodnie
z zasadą ciągłości (jedną z postaci prawa zachowania masy)
objętość przepływającej cieczy na jednostkę czasu pozostaje stała.
Przykładowo dla dwóch przekrojów poprzecznych, oznaczonych
jako 1-1 oraz 2-2, możemy zapisać:
(∗) Q = v1A1 = v2A2,

gdzie v1 i v2 to średnie prędkości przepływu cieczy w przekrojach
o polach powierzchni, odpowiednio, A1 oraz A2.

Choć dzisiaj równanie (∗) wydaje się oczywiste, zostało ono
sformułowane dopiero w XVII wieku.

Dla cieczy idealnej (czyli takiej, w której można pominąć straty
energii) równanie Bernoulliego zastosowane do przepływu między
punktami 1-1 i 2-2 przyjmuje postać:

v2
1

2g
+ p1

ϱwg
+ z1 =

v2
2

2g
+ p2

ϱwg
+ z2.

Zakładając, że ciśnienia w obu punktach są równe (p1 = p2 = pa)
oraz że różnica wysokości z1 − z2 = ∆L, powyższe równanie
upraszcza się do postaci:

v2
1 − v2

2
2g

= −∆L.

Uwzględniając związek między prędkością a przepływem:
Q = vA = vπd2/4, ostateczny wzór na strumień objętościowy
przyjmuje postać:

Q =
πd2

2

√
2g∆L

4
√

(d1/d2)4 − 1
.

Zatem aby wyznaczyć natężenie przepływu, wystarczy zmierzyć
trzy wielkości geometryczne: średnice strumienia w dwóch
przekrojach oraz odległość między tymi przekrojami. Po
podstawieniu danych liczbowych otrzymujemy natężenie
3, 4 · 10−5m3/s.
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Twierdzenie Cevy – podstawy
Bartłomiej BZDĘGA Uniwersytet im. A. Mickiewicza w Poznaniu

Wśród olimpijczyków oraz pasjonatów geometrii szeroko znane jest85

A B

C

P

Q

R

K a1

a2
b1

b2

c1 c2

α1

α2
β1

β2

γ1
γ2

Twierdzenie Cevy

Wskazówkidozadań

1.Dlaśrodkaciężkościwystarczy
klasycznawersjatwierdzeniaCevy.
Wprzypadkudwusiecznychiwysokości
odmianatrygonometrycznawyglądanieco
korzystniej.
2.Napoczątekwystarczytwierdzenie
ostycznych.
3.Przydatnylemat(przyoznaczeniach
ztwierdzenia).Jeśliprawdziwesądwa
znastępującychstwierdzeń,totrzecie
również:
(a)RjestśrodkiemodcinkaAB
(b)PQ∥AB
(c)AP,BQiCRprzecinająsię

wjednympunkcie.
4.Odpowiednieproporcjedlatrójkąta
BRQmożnaznaleźćdziękitrygonometrii
albopodobieństwutrójkątówukrytemu
wtrapezach.Wygodniejestodnosić
wszystkododługościbokówdanych
kwadratów.
5.PoprowadźmyprzezpunktAprostą
ℓ∥BC.NiechPiQbędąprzecięciami
prostejℓi,odpowiednio,prostychDE
iDF.ZtwierdzeniaTalesaotrzymamy
|AQ|=

|AF|·|BD|
|FB|ianalogicznąformułę

na|AP|.ResztęzałatwitwierdzenieCevy
dlatrójkątaABC.
6.NaczworokącieABDEmożnaopisać
okrąg.BiorącjakoPpunktprzecięcia
prostychMHiDE(podkątemprostym)
irachującnakątach,dojdziemydo
równości|?AHM|=|?BAC|orazpięciu
analogicznych.To,wrazztwierdzeniem
sinusówzastosowanymdotrójkątaAHM
ianalogicznych,wystarczado
zastosowaniatwierdzeniaCevy
kończącegodowód.

Twierdzenie Cevy. W trójkącie ABC na bokach, odpowiednio, BC, CA, AB leżą
punkty P , Q, R. Przyjmijmy oznaczenia jak na rysunku obok i niech

s = a1

a2
· b1

b2
· c1

c2
.

Wówczas odcinki AP , BQ, CR mają punkt wspólny wtedy i tylko wtedy, gdy s = 1.

Teza twierdzenia jest prawdziwa również, gdy jeden z punktów P , Q, R należy do boku
trójkąta, a pozostałe dwa leżą na przedłużeniach odpowiednich boków. Tutaj ograniczę
się jednak do przypadku wymienionego w twierdzeniu.

Dowód (⇒). Załóżmy najpierw, że odcinki AP , BQ, CR mają punkt wspólny K.
Oznaczmy pola [BKC], [CKA], [AKB] przez, odpowiednio, PA, PB , PC . Jest jasne
(wspólne wysokości), że [ABP ]

[ACP ] = a1
a2

= [KBP ]
[KCP ] . Stosunki pól są równe, więc także

a1
a2

= [ABP ]−[KBP ]
[ACP ]−[KCP ] = PC

PB
. Mnożąc tę równość z dwiema analogicznymi, otrzymamy

tezę.
Dowód (⇐). Zakładamy, że s = 1. Przypuśćmy, że mimo tego
odcinki AP , BQ, CR nie przecinają się w jednym punkcie. Niech
AP i BQ przecinają się w punkcie K. Niech prosta CK przecina
odcinek AB w punkcie R′ ̸= R. Z udowodnionej już implikacji (⇒)
mamy równość a1

a2
· b1

b2
· |AR′|

|R′B| = 1 = s, z której wynika, że |AR′|
|R′B| = c1

c2
.

Jednak to jest niemożliwe, ponieważ punkty R i R′ są różne.

Odcinki lub proste AP , BQ i CR nazywa się krótko czewianami.
Twierdzenie Cevy można również wyrazić za pomocą kątów. Jest to

Trygonometryczne twierdzenie Cevy.
W trójkącie ABC leżą punkty P , Q, R na bokach,
odpowiednio, BC, CA, AB. Przyjmijmy oznaczenia
jak na rysunku i niech

t = sin α1

sin α2
· sin β1

sin β2
· sin γ1

sin γ2
.

Wówczas odcinki AP , BQ, CR mają punkt wspólny
wtedy i tylko wtedy, gdy t = 1.

Dowód. Uzgodnijmy, że a = |BC|, b = |CA| i c = |AB|. Wystarczy udowodnić, że
s = t. Zauważmy najpierw, że a1

a2
= [ABP ]

[ACP ] =
1
2 c|AP | sin α1
1
2 b|AP | sin α2

= c sin α1
b sin α2

. Mnożąc stronami tę
równość przez dwie analogiczne, otrzymamy s = t.

Z tego twierdzenia można również korzystać dla samych trzech cięciw danego okręgu
– wystarczą tylko miary odpowiednich kątów, długości boków są niepotrzebne. Sama
równość a1

a2
= c sin α1

b sin α2

ma swoją wartość – można ją używać w twierdzeniu Cevy, zamieniając, wedle uznania,
proporcje podziałów boków na ich trygonometryczną wersję.

Zadania

1. Wykaż, że następujące czewiany w trójkącie ostrokątnym przecinają się w jednym
punkcie: środkowe (w środku ciężkości), dwusieczne (w środku okręgu wpisanego),
wysokości (w ortocentrum).

2. Wykazać, że odcinki łączące punkty styczności okręgu wpisanego w trójkąt
z przeciwległymi wierzchołkami przecinają się w jednym punkcie (punkt
Gergonne’a).

3. Udowodnić za pomocą twierdzenia Cevy, że w trapezie, niebędącym
równoległobokiem, następujące punkty leżą na jednej prostej: środki podstaw, punkt
przecięcia się przekątnych oraz punkt przecięcia się prostych zawierających ramiona
trapezu.

4. Częścią wspólną kwadratów ABCD i AP QR jest odcinek AR. Wykazać, że proste
BP , CQ i DR przecinają się w jednym punkcie.

5. Dany jest trójkąt ostrokątny ABC. Punkt D jest spodkiem wysokości opuszczonej
na bok CB, natomiast K jest dowolnym punktem wewnętrznym tej wysokości.
Proste BK i CK przecinają odcinki AC i BC w punktach, odpowiednio, E i F .
Udowodnić, że prosta AD jest dwusieczną kąta F DE. (Kanadyjska OM, 1994)

6. Odcinki AD, BE i CF są wysokościami trójkąta ostrokątnego ABC i przecinają się
w punkcie H. Punkty K, L, M leżą, odpowiednio, na odcinkach BC, CA, AB oraz

HK⊥EF, HL⊥F D, HM⊥DE.

Udowodnić, że odcinki AK, BL i CM przecinają się w jednym punkcie.
(XIV WLM)
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