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Maxwell, Szilard,

*Instytut Fizyki Teoretycznej, Wydzial
Fizyki Uniwersytetu Warszawskiego

James Clerk Maxwell (1831-1879) —
szkocki fizyk i matematyk, laureat
Medalu Rumforda (1860).
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Rys. 1. Schemat ilustrujacy dziatanie
demona Maxwella. Przegroda otwiera si¢
tak, aby przepuscié¢ szybkie czastki lecace
z prawego pudla do lewego i wolne czastki
lecace z lewego pudla do prawego. Po
uplywie pewnego czasu temperatury

w obu pudlach beda rézne. Lewe pudlo
bedzie mialo wyzsza temperature,

a prawe nizszg.

Demon (stgr. darpwr, daimon,
nadprzyrodzona potega, dola; tac.
daemon) — istota wystepujaca w wielu
wierzeniach ludowych, mitologiach

i religiach, ktéra zajmuje pozycje
posérednig miedzy bogami a ludzmi,
miedzy sferg ziemsko-ludzka, materialng
a sferg boska, czysto duchowa; istota
o cechach na wpét ludzkich, na wpét
boskich; najczesciej nieprzyjazny
cztowiekowi duch, zwigzany pierwotnie
z pojeciem nieczystoéci sakralnej.
(Wikipedia)

Leé Szildrd (1898-1964) —
wegiersko-amerykanski fizyk i biolog
molekularny.

Landauer, Bennett i ich demon
Krzysztof BYCZUK*

Spontaniczny przeptyw ciepla zachodzi od ciala o wyzszej temperaturze do
ciala o nizszej temperaturze. Jest to jedno ze sformutowan drugiej zasady
termodynamiki wedtug Clausiusa. Nie mozna uzyskaé¢ pracy w procesie
cyklicznym, pobierajac energie jedynie z jednego rezerwuaru. Jest to
sformutowanie tej samej zasady termodynamiki, ale wedlug Kelvina. Oba
sformulowania sa réwnowazne, patrz |A3,. Mozna je tez zapisa¢ matematycznie:
Istnieje funkcja stanu S zwana entropia, patrz Aly, ktéra w ukladzie
izolowanym, w ktorym zachodzi proces termodynamiczny, nigdy nie maleje:
AS > 0. Gdy zachodzi réwno$é, to taki proces, z definicji, nazywamy
odwracalnym.

Pozorna sprzecznos¢ drugiej zasady termodynamiki z odwracalnymi w czasie
prawami dynamiki Newtona w mechanice klasycznej pobudzala wyobraznie
uczonych, patrz Aly. Juz w 1867 roku James Maxwell zaproponowat
eksperyment myslowy majacy obali¢ bezwzgledng stusznosé drugiej zasady
termodynamiki. Rozwiazanie tego paradoksu zajeto 115 lat, a temat ten jest
nadal zywy i interesujacy. Doczekal si¢ tez weryfikacji doswiadczalne;j.

Maxwell

W eksperymencie mys$lowym James Maxwell zaproponowal, aby podzieli¢
przegroda na dwie czesci pudlo z gazem znajdujacym sie w réwnowadze
termodynamicznej. Temperatury gazu w obu potéwkach sg identyczne, $rednia
energia kinetyczna czasteczek rowniez. Oznacza to jednoczesnie, ze w obu
potowkach sg czasteczki zaréwno szybsze, jak i wolniejsze. Maxwell wprowadzit
niewielki otwér w przegrodzie, otwieranie i zamykanie ktérego nie wymaga
pracy. I na koniec wprowadzil super-stworka, ktéry ma mierzy¢ predkosci
czasteczek, i jesli czasteczka lecaca w strone otworu z prawej strony ma predkosé
wieksza od $redniej predkosci, otwiera przegrode i pozwala jej polecie¢ na lewa
strone. Odwrotnie, z lewej strony przepuszcza na prawo jedynie te czasteczki,
ktorych predkosci sa mniejsze od $redniej. W efekcie po uplywie pewnego

czasu lewa strona ma wiecej szybszych czasteczek niz prawa i jej temperatura
jest wyzsza niz temperatura prawej strony. Teraz wystarczy podtaczyé silnik
cieplny pomiedzy tak stworzonymi rezerwuarami i uzyska¢ prace. Powstato
perpetuum mobile drugiego rodzaju. Oczywiscie jest to sprzeczne z druga zasada
termodynamiki w sformutowaniu Clausiusa. Cieplto nie moze przeplywaé bez
poczatkowej réznicy temperatur. Pare lat pozniej, w 1874 roku, Kelvin nazwat
tego wyimaginowanego stworka demonem Maxwella. Cho¢ w literaturze demon
Maxwella byl przedstawiany jako kto$ obdarzony inteligencja, to w istocie jest to
odpowiednio zaprojektowane urzadzenie pomiarowe.

Szilard

Mimo goracych dyskusji zaden postep w zrozumieniu problemu (paradoksu)
demona Maxwella nie nastapit — az do 1929 roku. Wtedy to Le6 Szilard (czytaj
Silard) zaproponowal uproszczona wersje rozumowania Maxwella, znang obecnie
pod nazwg silnika Szilarda. W swoim eksperymencie myslowym rozwazyl on
pojemnik o objetosci V' z jedna czasteczka (lub atomem) spelniajaca réwnanie
stanu gazu doskonalego pV = kgT (kg jest to stala Boltzmanna). W wyniku
zderzen ze Sciankami czastka moze wymienia¢ energie z otoczeniem i po kazdym
takim zderzeniu jej energia kinetyczna wraca do wartos$ci odpowiadajacej
temperaturze otoczenia T'. Demon umieszcza doktadnie po $rodku ruchoma
niewazka przegrode i sprawdza, po ktérej stronie znajduje sie czasteczka. Po

tej stronie, po ktorej jest czasteczka, umieszcza niewazka nié¢ przewinieta przez
niewazki bloczek, a na koncu nici zawieszona jest masa. Wszystkie czynnosci
zrobione przez demona nie wymagaly wykonania pracy. Teraz, gdy czasteczka
uderzy (wielokrotnie) w przegrode, spowoduje jego kwazistatyczne (odwracalne)
przemieszczenie sie i podniesienie masy na pewna wysoko$é. Ttok wykonat
prace, podnidst mase, a wykonana praca jest zgromadzona w postaci energii
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Rys. 2. Schemat ilustrujacy eksperyment
myslowy opisujacy dzialanie silnika
Szilarda. Po lewej stronie ci$nienie gazu p
wytwarzane przez jedng czasteczke
poruszajaca si¢ chaotycznie i uderzajaca
w Scianki, po prawej stronie préznia.
Poniewaz energia wewnetrzna gazu
doskonalego si¢ nie zmienita, U = %kBT,
gaz pobratl cieplo z otoczenia, aby
utrzymaé stala temperature 7' i wykonac
prace W, co jest zgodne z pierwsza
zasada termodynamiki AU = Q + W.

Rolf Wilhelm (William) Landauer
(1927-1999) — amerykanski fizyk, znany
z tzw. zasady Landauera. Zajmowal si¢
informatyka teoretyczna.
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Nieodwracalna operacja logiczna OR

potencjalnej grawitacji. Wykonana praca nad ukladem przy maksymalnym
przesunieciu sie tloka wynosi
v

W= / p(V)dV = —kpTIn2 < 0,
V)2

czyli uktad wykonal prace réwna W = kpTIn2. Mamy sprzecznosé z druga zasada
termodynamiki w sformutowaniu Kelvina. Dla utrzymania stalej temperatury
(proces izotermiczny) uklad pobral z rezerwuaru ciepto w ilosci Q = kT In2,
ktére zostalo w calodci zamienione na prace. Entropia rezerwuaru zmalata

0 AS =Q/T = kpln2. Szilard i jego nastepcy blednie uwazali (bez podania
dowodu), ze proces pomiaru polozenia czasteczki musi produkowaé entropie nie
mniejsza niz kg In 2, aby uratowa¢ druga zasade termodynamiki.

Landauer

Najwazniejszy krok w kierunku wyjadnienia paradoksu demona Maxwella
dokonal sie w 1961 roku wraz z przelomowa praca Rolfa Landauera. Tematem
pracy Landauera nie byl jednak paradoks demona Maxwella per se, lecz
problem przetwarzania logicznego, zapisywania i kasowania informacji. Sama
matematyczna koncepcja informacji logicznej powstata w 1948 roku. Claude
Shannon powiazal informacje z prawdopodobienstwem otrzymania danego
przekazu p;. Im mniejsze jest to prawdopodobienstwo, tym wieksza musi

by¢ ilo$¢ informacji zawarta w tym przekazie. Wiadomosé, ktorej tresé

jest wczesniej znana, p; = 1, nie zawiera zadnej informacji. Dla danego
rozktadu prawdopodobienstwa {p;} Shannon wprowadzil érednia informacje
H = -3, pilog, p;, znang obecnie jako entropia informacji. Logarytm

przy podstawie 2 nawigzuje do ukladu binarnego i bitu informacji, stanu
logicznego 0 lub 1. Podobno na pomysl, aby nazwaé wielko$¢ H entropia, wpadtl
John von Neumann, w konwersacji z Shannonem stwierdzil, ze i tak nikt nie
rozumie, czym jest entropia, wiec ta nazwa bedzie dobra.

Landauer podzielil logiczne procesy przetwarzania informacji na odwracalne

i nieodwracalne. Przyktadem operacji odwracalnej jest operacja jednobitowa
NOT lub dwubitowa CNOT. Jak wida¢ z tabelki dzialania, znajomosé bitu
(bitéw) konicowego pozwala jednoznacznie okreslié¢ bit (bity) poczatkowy.
Operacje odwracalne sa iniekcja, odwzorowaniem jeden na jeden. Sa tez operacje
nieodwracalne, na przykltad operacja OR. Na podstawie znajomosci bitu
koncowego nie umiemy ustali¢, jakie byly bity poczatkowe.

Ponadto Landauer powigzal proces przetwarzania informacji z procesem
fizycznym. Noénikiem informacji zawsze jest jakis uklad fizyczny,

a przetwarzaniu informacji musi towarzyszy¢ zjawisko fizyczne, zgodne

z prawami fizyki. W szczegdlnosci zgodne z prawami termodynamiki. Na
przyktad stanowi logicznemu 0 odpowiada czasteczka znajdujaca sie w lewej
potowce pudetka, w stanie L, a stanowi logicznemu 1 odpowiada czasteczka

w prawe]j polowie, w stanie R. Oczywiscie mozliwych realizacji stanu jednego
bitu jest bardzo wiele. No$nikiem moze by¢ polaryzacja fotonu, magnetyzacja
domeny magnetycznej, spin elektronu, stan tadunkowy bramki MOSFET i wiele
innych mozliwosci.

Odwracalnym procesom logicznym odpowiadaja w przyrodzie odwracalne
procesy fizyczne, niezmieniajace catkowitej entropii uktadu. Na przyktad proces
zapisywania czy zapamietywania informacji jest procesem odwracalnym i polega
na kopiowaniu jeden do jednego stanu pierwszego ukladu na drugi. Nie ma tutaj
jakiej$ minimalnej pracy, ktéra bylaby potrzebna, aby skopiowaé¢ stan jednego
bitu na stan drugiego.

Najwazniejszym spostrzezeniem Landauera jest jednak obserwacja, ze proces
wymazywania pamieci jest nieodwracalny i tym samym odpowiadajacy mu
proces fizyczny jest tez nieodwracalny, generujacy ciepto czy dyssypacje energii
i zwiekszajacy calkowita entropie uktadu. Faktycznie, jesli uméwimy sie, ze
standardowym stanem odniesienia, nieniosacym informacji, jest stan, w ktorym
czasteczka jest w lewej polowie, to zaréwno stan logiczny 0, jak i 1, ktérym
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Rys. 3. Nieodwracalna operacja
wymazania (skasowania) pamieci. Stany
L i R s3 mapowane na ten sam stan
odniesienia, zgodnie z naszg umowsa L.
Znajac tylko stan koncowy, nie wiemy,
w jakim stanie poczatkowym byl uktad.
Tej operacji nie mozna odwrécié.

O
BERE=S

Rys. 4. Fizyczna realizacja wymazania
pamieci

Charles H. Bennett (ur. 1943) —
amerykanski fizyk, filozof.
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odpowiadalo polozenie czasteczki L i R, jest przeksztalcany w stan L, czyli
logiczne 0. Po wymazaniu pamieci nie mozemy juz sprawdzié¢, jaki byl stan
poczatkowy bitu. Taki proces jest nieodwracalny i musi generowaé ciepto.

Prace potrzebna do wymazania jednego bitu pamieci znajdziemy, biorac pudetko
o objetosci V' z jedna czasteczka pozostajaca w kontakcie z rezerwuarem

o temperaturze T, znajdujaca sie z lewej, L, lub prawej, R, strony. Teraz

od prawej strony przesuwamy bardzo powoli i bez tarcia (kwazistatycznie)

tlok, redukujac objeto$¢ z V' do V/2. Niezaleznie od tego, w jakim stanie
poczatkowym byla czasteczka, po tej operacji znajduje sie ona w standardowym
stanie odniesienia L. Wykonana praca nad uktadem wynosi W = kT In 2. Praca
ta przekazana jest do otoczenia w postaci ciepta Q.

Prawo Landauera stwierdza, ze minimalna praca potrzebna do wymazania
jednego bitu informacji z pamieci w danej temperaturze T wynosi kg7 In 2.
O ile uczenie sie, zapamietywanie, teoretycznie nie wymaga pracy, to niestety
zapominanie zawsze zwiazane jest z pewna praca. Dosé przewrotna konkluzja.

Bennett

Wr6émy do drugiej zasady termodynamiki i demona Maxwella. W 1982 roku
Charles Bennett powiazal odkrycia Landauera z ponadstuletnim paradoksem
Maxwella. Nawiasem méwiac, do podobnych wnioskéw doszedt juz w 1970 roku
Oliver Penrose. Aby demon Maxwella czy silnik Szilarda dziataly w sposéb
cykliczny, pamieé¢ demona, w ktorej zapisany byl stan czasteczki, musi byé
wymazana (zresetowana). Jedynie wtedy operacja pomiaru stanu czasteczki
mogla zosta¢ powtorzona. Tak wiec nie pomiar stanu czasteczki, nie otwieranie
przegrody lub mocowanie nitki i bloczka, jak blednie zakladali Szildrd i inni,
lecz proces kasowania pamieci prowadzi do dyssypacji energii i sprawia, ze
druga zasada termodynamiki jest nadal prawdziwa. Egzorcyzmy nad demonem
Maxwella zostaly dopelnione.

Najwiekszym chyba zaskoczeniem jest jednak powiazanie dwdch z pozoru
zupelnie réznych $wiatéw, teorii informacji i termodynamiki. Z punktu widzenia
teorii informacji bit w stanie 0 lub 1 ma entropie informacji réwna log, 2 =1,
gdyz sa dwie mozliwodci z tym samym prawdopodobienstwem 1/2. Stan
standardowy bez informacji 0 ma entropie log, 1 = 0, gdyz prawdopodobienstwo
wystapienia tego stanu wynosi jeden. Mamy wiec zmiane entropii informacyjnej
o jeden w nieodwracalnym logicznie procesie kasowania pamieci.

Zakladajac teraz, za Landauerem, ze procesom logicznym odpowiadaja procesy

fizyczne, mozemy przyrownacé entropie informacji i entropie termodynamiczng:
S =cH,

gdzie ¢ = kp/log, e jest zwiazane ze zmiana podstawy logarytmu z 2 na e

oraz z tym, ze entropia termodynamiczna ma wymiar J/K. Tym samym

zmiana entropii wynosi AS = kpIn2 i iloé¢ energii oddanej jako ciepto

Q =TAS = kgT'In 2 wynosi dokladnie tyle co poprzednio.

Postscriptum

Po rozwiazaniu eksperymentu mysélowego naukowcy rozpoczeli prawdziwe
eksperymenty z demonem Maxwella w laboratoriach. Na przetlomie XX

i XXI wieku staly si¢ mozliwe eksperymenty, w ktérych manipuluje sig
pojedynczymi atomami, elektronami czy fotonami. To otworzylo droge do
skonstruowania demona Maxwella. Na przyktad w 2007 roku naukowcy
wykorzystali bramke zasilana Swiatlem, aby zademonstrowa¢ dzialanie demona
Maxwella. W 2010 roku inny zespdt opracowal sposéb wykorzystania energii
wytworzonej przez informacje demona do wprawienia kulki w ruch, w gore,

a w 2016 roku naukowcy zastosowali koncepcje demona Maxwella do dwdch
komoér zawierajacych nie gaz, ale $wiatto. Wykorzystano tez aparat mechaniki
kwantowej do sformutowania termodynamiki kwantowej i badania kwantowego
odpowiednika demona Maxwella.

Jak wida¢, problem zamiany energii w prace, pochodzacy jeszcze z XIX wieku,
jest nadal zywy i aktualny.
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Qopilia quadrata
Zrédtlo: Biodiversity HeritageLibrary)
CC BY 2.0, Wikimedia Commons

Skaningowa wizja

W 1891 roku niemiecki zoolog Seliq Exner w swojej ksiazce Die Physiologie

der Facettirten Augen von Krebsen und Insekten (Fizjologia oczu zloZonych
skorupiakéw i owaddw) opisal nietypowa budowe oka morskiego skorupiaka

o nazgwie Copilia quadrata. Intrygujacy, acz niejasny, opis sprowokowat

wiele lat péZniej naukowcow z Wielkiej Brytanii do doktadnych badan tego
dziwnego zwierzecia. Oko Copilia przypomina konstrukcja pierwsze inzynierskie
rozwigzania stosowane w. .. telewizorach.

Wedlug opisu z koncowki XIX wieku Copilia miata pare oczu sktadajacych sig
z dwéch soczewek: jednej lezacej na powierzchni i drugiej lezacej we wnetrzu
ciala zwierzecia, mniej wiecej w polowie jego dtugosci. Najbardziej uderzajacy
byt, jak pisat Exner, ,staly i zwawy ruch” wewnetrznej soczewki.

Opis sporzadzony przez niemieckiego zoologa byl na tyle intrygujacy, ze
wciagnal Brytyjczykéw w poszukiwania przedstawicieli gatunku. Nie byto to
proste, w wodzie z 14 potowéw przeprowadzonych w zatoce Neapolitanskiej

na glebokosci 200 m udato im si¢ znalezé 9 osobnikéw. Niby nie tak malo,
jednak zwazmy, ze mowa tu o zwierzeciu praktycznie przezroczystym, wielkosci
maksymalnie 3 mm, z czego polowe stanowi cieniutki ,ogon” (ang. tail, choé¢
stowo to w jezyku polskim zarezerwowane jest dla kregowcéw). Zlowione
skorupiaki poddano dokladnym badaniom, ktore opublikowano w artykule ,, The
curious eye of Copilia”, w prestizowym Nature w 1964 roku.

Copilia quadrata nalezy do widtonogow, malenkich skorupiakéw zamieszkujacych
powszechnie wody stone i stodkie. Cialo samic Copilia jest przejrzyste, dzieki
czemu pod mikroskopem widaé¢ wewnetrzne struktury w dzialaniu, takze oka.
Dwie soczewki, utozone jedna nad druga, potaczone sa delikatna stozkowata
btona. Dolna soczewka polaczona jest ze zgieta w tuk pomaranczowa struktura,
bedaca receptorem. Z niego prowadzi pojedynczy nerw do moézgu skorupiaka.
Zewnetrzna soczewka jest sztywno zakotwiczona w skorupce pokrywajacej
zwierze. Za to wewnetrzna pozostaje zawieszona na systemie elastycznych
wiezadel i mieéni, ktére zawiaduja ruchem soczewki i przyklejonego do niej
receptora. Wewnetrzne soczewki obu oczu wykonuja stale oscylacyjne ruchy
niezalezne od ruchéw zwierzecia.

Exner opisal budowe oka tego skorupiaka 5 lat po tym, jak niemiecki wynalazca
Paul Nipkow opatentowal ,elektryczny teleskop”, ktéry w duzej mierze
przyczynil sie do rozwoju telewizji. Oba te twory opieraja si¢ na podobnej idei:
tworzenia obrazu metoda skanowania.

Tarcza Nipkowa byla podstawowym elementem pierwszych telewizoréow i kamer
telewizyjnych. Urzadzenie sktadalo si¢ z obracajacej sie tarczy z serig spiralnie
potozonych otworéw. Gdy tarcza sie obracala, kazdy otwér przesuwat sie

po innej linii obrazu, skanujac go w ten sposéb od géry do dotu. Swiatlo,
przechodzace przez otwory, trafialo na $wiattoczuta komodrke, ktéra zamieniata
zmienng intensywnos¢ $wiatta na proporcjonalnie zmienny sygnatl elektryczny.
Sygnal byl nastepnie przesylany z odbiornika, w ktérym znajdowaly sie
identyczna, dzialajaca w tym samym tempie, tarcza i uktad odwracajacy sygnatl
na $wiecace punkty, odbierany przez ludzkie oko jako ruchomy obraz. Tarcza
Nipkowa dziatala zatem jak mechaniczny skaner, ktory rozkladal obraz na
pojedyncze punkty w czasie.

Brytyjscy naukowcy badajacy skorupiaka uznali, ze uklad soczewek i ich ruch
przypomina rozwiazanie stosowane w mechanicznej telewizji skaningowej
stosujacej dysk Nipkowa.

Dolna soczewka w oku Copilia porusza si¢ charakterystycznym ruchem
przypominajacym zabki pily, skanuje otoczenie punktowo, po kolei, troche jak
dzieje sie¢ to w trakcie czytania — kolejno nastepujace po sobie litery sktadamy
w stowa, Sledzac tekst od géry do dotu kartki. Do takiego sposobu rejestracji
obrazu wystarczy jeden receptor i jeden nerw wzrokowy, zupelnie inaczej niz
w ludzkim oku, w ktérym znajduje si¢ okoto 126 milionéw receptorow i wiele
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»The curious eye of Copilia”
Gregory R.L., Ross H.E. i Moray N.
Nature 201 (1964)
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nerwow skladajacych sie w gruby ,kabel” nerwu wzrokowego. Jednak aby
otrzymaé precyzyjny obraz w ukladzie jednoreceptorowym, potrzebny jest
solidny system przetwarzania, ktorego u malerikiego skorupiaka nie ma.

Proces ewolucji weryfikuje réznego rodzaju rozwiazania. Niektére z nich znikly
wraz z ginacymi gatunkami, o wielu nigdy sie nie dowiemy. Czasem mozna
jednak podejrzeé, jakie ,pomysty” generuje natura. Wciaz trwaja, cho¢ nie
rozwinely sie masowo i nie utrwalily u wyzszych organizméw. Co najwazniejsze,
widzenie Copilia quadrata oparte na skanowaniu z jej prostym uktadem
nerwowym moze nie daje dobrej jakosci obrazu, jednak wychwytuje ruch. Jest
wystarczajace dla tych niewielkich skorupiakéw, by uniknaé tego, co si¢ rusza.
Jest kluczowe do przezycia, podobnie jak dla miliardéw podobnych stworzen
nieustannie narazonych na pozarcie przez drapiezniki.

I dobrze, Ze system jest na tyle mocny, by przetrwaé, a na tyle wadliwy, by
zostaé pozartym. Bo malenkie skorupiaki i ich larwy stanowia krytyczny
element w sieci pokarmowej wod. Olbrzymia obfito$¢ tych stworzen, zwiazana
z ich mizerna szansa na przezycie, umozliwia rozkwit zycia w innych, bardziej
zlozonych formach: stawonogéw, gabek, jamochtonéw, mieczakéow i ryb. A na
koncu, posrednio, ssakéw. Takze takich jak ja.

Marta FIKUS-KRYNSKA

Przygotowal Arkadiusz HESS

F 1135. Czastka jest wyrzucona pionowo w gore z powierzchni Ziemi
z predkoscia wystarczajaca, aby osiagnaé nieskoniczona wysoko$é (zaniedbujac
op6r powietrza). Udowodnij, ze czas potrzebny do osiagniecia wysokosci h dany

jest wzorem:
1 [2R h\ 32
t=—y/— |1+ = -1
3V ¢ (+R) ’

R to promien Ziemi, a g przyspieszenie grawitacyjne na jej powierzchni.
[Zrédlo: Newtonian Dynamics, Richard Fitzpatrick.]

F 1136. Hydroniusz Kranowski postanowil wykonaé¢ w ogrodzie ciekawe
doswiadczenie. Zamierzal zmierzy¢ przeplyw wody z kranu ogrodowego

z wykorzystaniem jedynie linijki. Ustalil, ze $rednica przy miejscu wyplywu

ma d; = 10mm, a w odleglosci AL = 0,5m od tego miejsca érednica strumienia
wynosi do = 6 mm. Poméz Hydroniuszowi obliczy¢ natezenie przeplywu wody @
w jednostkach m3 /s.

[Zadanie oraz grafika zaczerpnigte z ksiazki: 100 prostych doswiadczen z wodg

i powietrzem Ryszarda Blazejewskiego.]

Przygotowal Dominik BUREK

M 1840. Wielomian 23 + px? + ¢x + r ma trzy pierwiastki w przedziale (0, 2).
Udowodni¢, ze
—2<p+qg+r<O.

M 1841. Dana jest liczba catkowita dodatnia n taka, ze
nwd(n,n+ 1) < nwd(n,n +2) < ... < nwd(n,n + 35).

Udowodnié, ze
nwd(n,n + 35) < nwd(n,n + 36).

M 1842. Tabliczka czekolady w ksztalcie tréjkata rownobocznego o boku
dtugosci p sklada sie z p? kostek, czyli kawalkéw w ksztalcie tréjkata
réwnobocznego o bokach dtugosci 1, rownolegtych do bokéw tabliczki czekolady.
Dwoéch graczy na zmiane moze odlamaé kawalek w ksztalcie trojkata (lamiac
wzdluz jednej z linii podziatu czekolady na kostki). Gracz, ktéry nie ma ruchu
lub zostawi przeciwnikowi dokladnie jedna kostke, przegrywa. Zalézmy, ze p jest
liczba pierwsza. Ktory z graczy ma zwycieska strategie?
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O teoriach rozstrzygalnych mozna
przeczytaé¢ réwniez w nieco starszych
wydaniach Delty, np. A;4-

Mozna by chociazby zapytaé
o prawdziwo$é zdania:
VNIpIg(p 2 NAg=p+2AP(p) AP(q))-

Teorie rozstrzygalne
Lukasz KAMINSKI*

Od wiekéw ludzie marza o narzedziu, ktére byloby w stanie odpowiedzieé¢
na kazde pytanie. Nie bez powodu wymyslone zostaly wyrocznie, magiczne
kule. .. czy tez sztuczna inteligencja. Intuicja podpowiada jednak, ze nawet
jesli ktorekolwiek z powyzszych odpowie na nasze pytanie, to do odpowiedzi
powinnidmy podejsé z ograniczonym zaufaniem. Czy da si¢ zatem stworzy¢
narzedzie, ktore nigdy si¢ nie myli?

Ograniczmy sie do pytan matematycznych. Naszym celem jest wiec maszyna,
ktora po otrzymaniu matematycznego stwierdzenia odpowiada, czy jest ono
prawdziwe, czy tez nie. Jedli zalozymy, ze pytania beda dotyczy¢ ustalonej
struktury matematycznej, zas stwierdzenia, o ktérych prawdziwo$é pytamy, beda
wyrazone w pewnym formalnym jezyku, to czy mozemy mieé nadzieje na sukces?

Logika pierwszego rzedu

Stwierdzenia (zdania) bedziemy formulowaé w tzw. logice pierwszego rzedu.

W uproszczeniu oznacza to, ze mozemy uzywaé zmiennych (np. z,y,...),
kwantyfikatoréow V, 3, standardowych spéjnikéw logicznych A, V, -, = nawiasow
oraz symboli funkcyjnych i relacyjnych z pewnego ustalonego wczesniej

zbioru, zwanego sygnaturg. Na przyklad sygnatura moze byé¢ {=,+, -}, za$
zdaniem logiki pierwszego rzedu nad ta sygnatura V,3,(y +y = z) lub tez
VaoVyVe(r - y=2-2=2+y=2x+z2). Z drugiej strony, zdanie Vyer3y(z-z) -z =y
nie jest poprawne, i to z kilku powodoéw: w rozwazanej w tym przykladzie
sygnaturze nie ma symbolu relacyjnego € R czy tez €, a ponadto w logice
pierwszego rzedu przy kwantyfikatorach nie moze sta¢ nic wiecej oprécz samych
tylko zmiennych. Zajmijmy si¢ wiec zdaniami, ktére sa poprawne. Czy zatem
Vx3y(y + y = x) jest zdaniem prawdziwym? To zalezy od kontekstu! Przyktadowo
w zbiorze liczb naturalnych, gdzie 4+ oraz - interpretujemy standardowo jako
dodawanie i mnozenie, zdanie V,3,(y + y = x) nie jest prawdziwe. Jesli jednak
zapytamy o jego prawdziwos¢ w zbiorze liczb rzeczywistych (gdzie + oraz -
znéw interpretujemy standardowo), to poprawna odpowiedz brzmi: prawda.
Nasze pytania powinny wiec dotyczy¢ ustalonej struktury, czyli zbioru wraz

z interpretacjami symboli z sygnatury. Teorig struktury nazywamy zbior
wszystkich zdann prawdziwych w tej strukturze. Przyktadowo, przez (N;+, -, =)
oznaczamy strukture liczb naturalnych ze standardowo zdefiniowanymi
dzialaniami + oraz -, za$ przez Th(N;+, -, =) oznaczamy jej teorie. Méwimy,

ze teoria jest rozstrzygalna, jesli istnieje algorytm, ktéry majac dane na wejsciu
zdanie logiki pierwszego rzedu, jest w stanie poprawnie odpowiedzie¢, czy nalezy
ono do tej teorii.

(Nie)rozstrzygalno$é w liczbach naturalnych

Pochylmy sie nad teoria Th(N;+, -, =). Zauwazmy, Ze za pomoca mnozenia mozna
zdefiniowaé m.in. relacje podzielnosci. Scilej rzecz biorac, mozna wprowadzi¢
relacje a|b, ktéra jest tak naprawde skrétem zdania 3. (a- ¢ =0). Majac do
dyspozycji relacje podzielnosci, mozna tez napisaé¢ formule P(p) orzekajaca, iz

p jest liczba pierwsza: VY,V (a-b=p = (a =pVb=p) A—=(a =0b)). Podobnie
dzieki dodawaniu mozemy poréwnywaé liczby, bo a < b jest tak naprawde skrotem
zdania 3. (a + ¢ = b). To pozwala juz wyrazaé naprawde wiele twierdzen. Gdyby
kto$ skonstruowal maszyne potrafiaca rozstrzygac, czy dane zdanie nalezy do tej
teorii, bytby to prawdziwy przetom!

Jednak, jak mozna sie bylo spodziewaé, nie jest tak dobrze! Teoria Th(N;+, -, =)
rozstrzygalna nie jest, co wnioskujemy z jednego ze stynnych twierdzen Godla.
Czy w takim razie cala nadzieja przepadila? Moze po prostu chcieliSmy zbyt
wiele? Co by na przyklad bylo, gdyby powstrzymaé sie od uzywania mnozenia?
Badania nad teoria Th(N;+, =) prowadzil juz w 1929 roku Mojzesz Presburger
(od jego nazwiska jest ona nazywana arytmetyka Presburgera). Z jego pracy
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Wiecej o zastosowaniach tego twierdzenia
pisze Lorenzo Clemente w |A3,]

Podpowiedz: rozstrzygalnosé¢ Th(C, +, -, =)
udowadniamy, korzystajac
z rozstrzygalnosci Th(R; +, -, =).

mozna wywnioskowaé, ze teoria ta jest rozstrzygalna! Zal6zmy jednak, ze
jestedmy zachlanni i chcemy méc uzywaé jeszcze jakiejs relacji, zachowujac
przy tym rozstrzygalno$é. Wiemy juz, ze rozszerzenie arytmetyki Presburgera

o mnozenie to zbyt duzo. Jednak moze jesli ograniczymy sie do dorzucenia
relacji podzielnosci |, to zachowamy rozstrzygalno$é? Niestety nie. Widzieliémy
juz, ze majac dodawanie, mozemy zdefiniowac relacje porzadku <. Podobnie +
oraz | pozwalaja juz zdefiniowaé¢ mnozenie. Formalnie chcemy umieé zastapié
kazde wystapienie ¢ = a - b réwnowaznym zdaniem nieuzywajacym symbolu
mnozenia ,,-”. Zauwazmy, ze gdybysmy mogli podnosi¢ do kwadratu, to byltoby
latwo. Istotnie, zdanie ¢ = a - b jest réwnowazne zdaniu ¢ + ¢ + a® + b? = (a + b)?.
Ale jak zdefiniowaé na przyklad a2? Niech = bedzie najmniejsza liczba wieksza
od 1, spetiajaca (a —1)|(x — 1) A (a+ 1)|(z — 1). Wéwezas jedli 2|a, to x = a?, zas
jesli 21 a, to x + 2 = a® (polecamy zastanowi¢ si¢ nad precyzyjnym uzasadnieniem
tego rozumowania). To juz wystarcza do stworzenia definicji. Wniosek jest taki,
ze Th(N;+, |, =) nie jest rozstrzygalna, bo nad sygnatura {+, |, =} jestesmy

w stanie wyrazi¢ to samo co nad sygnaturg {+,-, =}.

Jak widac, nie jest latwo rozszerzy¢ arytmetyke Presburgera, zachowujac przy
tym rozstrzygalnosé. Istnieja jednak nietrywialne przykltady, jak to zrobié.
Jednym z nich jest arytmetyka Seménova, czyli arytmetyka Presburgera

z dodatkiem funkcji powy(n) = 2". Zachecam Czytelnika do pomyslenia nad
ciekawymi przykladami zdan w logice pierwszego rzedu nad sygnatura tej teorii.

Mnozenie nie takie straszne

Powr6émy do struktury (N;+, - =). Czy mnozenie samo w sobie jest
odpowiedzialne za nierozstrzygalno$é jej teorii? Weale nie! Okazuje sie, ze
teoria Th(N;-, =) jest rozstrzygalna, co zostalo ogloszone w pracy Thoralfa
Skolema, a pézniej w pelni udowodnione przez Andrzeja Mostowskiego. Na
czes¢ tego pierwszego teorie te nazywamy arytmetyka Skolema. Podobnie jak
wczedniej, zastanéwmy sie, co mozna dodaé¢ do arytmetyki Skolema, zachowujac
rozstrzygalno$é. Oczywiscie dodawanie odpada, ale moze na przyklad relacja
porzadku <? Po pierwsze, za pomocg < mozna zdefiniowa¢ funkcje nastepnik
succ(n) = n + 1 (Czytelniku, sprawdz sam!). Nastepnie mozna zdefiniowaé

dodawanie za pomoca tzw. tozsamosci Tarskiego:

% succ(ab)).

a+b=cVec=0 < succ(ac) - succ(bc) = succ(c
Wynika stad, ze Th(N, -, <) rozstrzygalna nie jest (bo w przeciwnym wypadku
Th({N; +, -, =) bylaby rozstrzygalna). Istnieja jednak relacje, ktére mozna dorzucié,
nie tracac rozstrzygalnosci. Przykladem jest relacja a ~ b, ktéra zachodzi wtedy
i tylko wtedy, gdy liczby a,b maja dokladnie tyle samo dzielnikéw pierwszych, nie
wliczajac krotnosci (np. 20 ~ 6). Fakt ten zostal udowodniony w 1959 roku przez

Salomona Fefermana i Roberta Vaughta.
Nie tylko liczby naturalne

Jak dotad przygladaliSmy sie wylacznie strukturze liczb naturalnych. Rozwazmy
wiec teraz liczby rzeczywiste. W tym miejscu Czytelnik moze poczué sie
zaskoczony. Alfred Tarski udowodnil, iz struktura (R;+,-, =) ma rozstrzygalna
teorie! Ma to kilka ciekawych nastepstw. Przykladowo, twierdzenie to implikuje
istnienie algorytmu, ktéry rozstrzyga, czy dane réwnanie wielomianowe (np.

2% — 32 + 4 = 0) ma rozwiazanie rzeczywiste. Innym zastosowaniem moga byé
zadania z geometrii analitycznej, ktére to da sie zakodowaé jako zdania nad
sygnatura {+,,=}. Z twierdzeniem Tarskiego jest tez zwiazany intrygujacy
problem otwarty. Nie wiadomo, czy teoria struktury (R;+,-, exp, =) (gdzie exp(x)
oznacza funkcje e?) jest rozstrzygalna, czy tez nie. Mozna za to udowodnié, ze
teoria struktury (R;+, -, sin, =) jest nierozstrzygalna.

Na zakoniczenie dopowiedzmy jeszcze, ze teoria Th(Q;+, -, =) jest nierozstrzygalna
(co zostalo udowodnione przez Juli¢ Robinson), a teoria Th(C, +, -, =) jest
rozstrzygalna (co pozostawiamy jako éwiczenie). Czytelnikowi pragnacemu
dowiedzie¢ sie wiecej na opisany tu temat polecamy m.in. artykul A Survey

of Arithmetical Definability autorstwa Alexisa Besa.
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at Otwarty 11°: Zwierze w pudetku

Informatyk mégtby stwierdzi¢, ze chodzi
o ciagi binarne, ktérych odlegtos$é
Hamminga jest réwna 1.

Gdybys$my dodali dwa warunki
geometryczne: 1) kazda krawedz ma taka
samy, ustalona, dlugosé i 2) kazde dwie
sgsiednie krawedzie sa wzajemnie
prostopadte, to zaprezentowane kostki
moglibyémy nazwaé n-wymiarowymi
hipersze$cianami, a zalaczony rysunek
prezentowalby przykladowe rzuty na
ptaszczyzne kilku najprostszych
hipersze$cianéw. Sg nimi, odpowiednio,
odcinek, kwadrat, szescian i tesserakt.

Barttomiej PAWLIK

Jakie zwierzatko jest schowane w pudetku? Fizyk zakrzyknalby: Oczywiscie, ze
kot! Natomiast matematyk wie, ze moze chodzi¢ o pewnego jadowitego gada,
ktéremu poswiecony jest niniejszy odcinek naszego Kata.

Politechnika Slaska

Zacznijmy od teoriografowego uogélnienia pojecia pudelka. Kostka n-wymiarows,
nazywamy graf majacy 2" wierzchotkéw, kazdy z nich etykietujemy
jednoznacznie ciggiem binarnym dlugosci n i przyjmujemy, ze dwa wierzcholtki
sa polaczone krawedzia, gdy ich ciagi binarne réznia si¢ na dokladnie jednej
pozycji — takie dwa wierzcholki nazywamy sgsiednims.

Ponizej pokazemy przykladowe reprezentacje graficzne kostek wymiaru nie

wiekszego niz 4.

0110 0111
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11000, 110
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0100
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0000 0001

Skonstruujmy $ciezke w nastepujacy sposéb. W rozwazanej kostce zaczynamy
w dowolnie wybranym wierzchotku i w kazdym kroku przechodzimy z ostatnio
odwiedzonego wierzchotka do wierzchotka z nim sasiadujacego tak dlugo, jak
jest to mozliwe zgodnie z zasada: po dotarciu do nowego wierzchotka jego
poprzednik wraz ze wszystkimi swoimi sasiadami jest juz niedostepny.

Zademonstrujmy to na przykladzie kostki tréjwymiarowej (pudetka):

Otrzymana w ten sposéb Sciezke nazywamy wezem.

Dtlugosciq weza nazywamy liczbe krawedzi, przez ktore przechodzi. Zauwazmy,
ze kazdy waz w trojwymiarowej kostce ma dilugosé réwna 4, natomiast
w czterowymiarowej mozna skonstruowaé weze réznych dlugosci!

Co ciekawe, dla kazdego n > 2 mozna tatwo skonstruowac

relatywnie krotkiego weza — majacego dtugosé 2n — 2 (czy
wiesz jak?). Troche trudniej jest uzasadnié, ze krétsze

weze nie wystepuja w przyrodzie. Natomiast okreslenie
rozmiaru najdtuzszego weza jest nie lada wyzwaniem!
Obecnie znamy go tylko dla wymiaréw n < 8:

1,2, 4,7, 13, 26, 50, 98

(OEIS: |A099155). Jak dlugi moze byé waz
w 9-wymiarowym pudetku? Jezeli uda Ci sie, Czytelniku,
znalez¢ odpowiedz na to pytanie, to daj mi znac!

Juz wiemy, ze w pudetku matematyka mozna znalezé to samo, co w kieszeni
skapca. Wracajac jednak do kotow — zauwazmy, ze one tez bywaja umieszczane
w roznych miejscach. Koty w pudetkach sg uwielbiane przez fizykow, koty

w workach przez hazardzistéw, a koty w internecie przez nas wszystkich!
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O obwodach poliomin

* Wydzial Matematyki i Informatyki UJ

Piotr PIKUL*

Pouktadajmy jednostkowe kwadraty na plaszczyznie. Jeden kwadrat oczywiscie

nie pozwala na zadng mnogos¢ konfiguracji, a jego obwoéd wynosi 4 jednostki.

O O [

Mate uktady kwadratowych kafelkéw
(poliomina) i ich prostokaty ograniczajace

] Dwa tez nie daja duzej swobody, jesli chcemy, aby przylegaly do siebie bokami.
Przy takim zatozeniu mozna ulozy¢ tylko kostke domina, o obwodzie 6.
Poczawszy od trzech kwadratéw, pojawia si¢ jakas dowolnosé. Mozliwosci sa
jednak tylko dwie i obie daja taki sam obwdd powstalego wielokata. Caztery
kwadraty mozna zestawi¢ na az 5 sposobéw, w tym jeden o obwodzie 8 — takim
samym, jak osiagany przez 3 kafelki. Jednak obwdd obszaru pigciopolowego juz
nie moze wynosi¢ zaledwie 8 jednostek. Czytelnik moze sprobowaé¢ wyznaczy¢
kilka kolejnych wartosci minimalnego obwodu figury utozonej z n kwadratéow
(czyli tytulowego poliomina).

W tym artykule przedstawimy pelny dowdd jawnego wzoru na minimalny obwod.
Wydaje sie on calkiem ciekawy, ze wzgledu na réznorodnoéé¢ kolejnych etapéw,
cho¢ wszystkie sa elementarne.

Mozemy od razu przyjaé, ze konfiguracje kafelkéw nie sktadaja sie

Prostokat ograniczajacy poliomino, na
ktérego obwodzie zaznaczono krawedzie
przypisane do obwodu prostokata

z oddzielonych czesci; zsuwajac ewentualne ,,wyspy”, mozemy zmniejszy¢
taczny obwodd, poniewaz miejsce styku przestanie sie doliczaé¢ do obwodu.
Zauwazmy teraz, ze na kazdym ukladzie kwadratéw mozna opisa¢ doktadnie
jeden minimalny prostokat. Dowolny wiersz i dowolna kolumna tego prostokata
sa przecinane przez co najmniej dwie krawedzie zewnetrzne ulozonej

figury — te przed pierwszym i te za ostatnim polem lezacym w rozwazanym
wierszu. Mozemy przypisa¢ te krawedzie jednoznacznie do jednostkowych
krawedzi tworzacych obwdd prostokata — tych, ktére wyznaczaja krance
rozwazanego wiersza/kolumny. W ten sposéb wykazaliémy, ze obwdd prostokata

ograniczajacego jest nie wigkszy niz obwod ukladu kwadratowych kafelkéw.

Zauwazmy teraz, ze kafelki z danego wiersza mozemy zsunaé na jedna (np.
lewa) strone, tak aby tworzyly jeden prostokat (wysokosci 1). Postepujac tak

z kazdym wierszem, zapewnimy, ze zaden z nich nie zawiera wiecej niz dwéch

krawedzi. Potem podobnego zsuniecia mozemy dokonaé¢ w kazdej z kolumn.

|(' Czy to nie ,,popsuje” nam zadnego wiersza? Nie, poniewaz po zsunieciu wierszy
liczba kafelkéw w kolejnych kolumnach moze sie tylko zmniejszaé¢ — zatem po

zsunieciu kolumn otrzymamy nierosnace ,,wieze”. Nalezy zauwazy¢, ze podczas

tego calego zsuwania prostokat ograniczajacy mogt sie pomniejszyé, ale to nie

Otrzymany efekt — sp6jnosé kolumn
i wierszy — jest nazywany wypuklosciq
poliomina

przeszkadza — wszak szukamy minimalnego obwodu. Zatem zachowujac (lub
wrecz zmniejszajac) prostokat ograniczajacy, byliSmy w stanie ulozyé wszystkie

pola tak, ze kazdy wiersz i kolumna zawieraja dokladnie dwie krawedzie, czyli
obwdd figury jest teraz réwny obwodowi prostokata ograniczajacego!

Pytanie zatem sprowadza si¢ do tego, jaki najmniejszy
obwdd moze mieé prostokat o polu co najmniej n?
Aby to rozstrzygnaé, pokazemy najpierw, ze mozemy
ograniczy¢ uwage do pewnego szczegolnego typu
prostokatow.

Rozwazmy dwa prostokaty, axb i ¢xd, o jednakowym
obwodzie. Zachodzi wtedy (a + b)? = (c + d)?, czyli
2(cd — ab) = a® + b — ¢ — d?. Majac te zaleznosé,
otrzymujemy kolejna:
(a—b)?—(c—d)?=a*+b*—c*—d*—2ab+ 2cd

réznice dtugosci bokéw

= 4(cd — ab),
——
pola
ktéra oznacza, ze prostokat o mniejszej réznicy diugosci
bokéw ma wieksze pole! Gdyby$smy mieli ustalony,
catkowity obwdd 2k, to byloby wiadomo, ze aby
zmaksymalizowaé pole prostokata o takim obwodzie,
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nalezy znalez¢ dwie liczby catkowite a, b spelniajace
a + b = k oraz minimalizujace réznice |a — b|.

Nie trzeba chyba tlumaczy¢ obserwacji, ze obwdd prostokata
o caltkowitych dlugosciach bokéw jest liczbg parzysta.

Dla parzystego k odpowiedZ to oczywiscie a = b = k/2
(nie sposéb o mniejsza réznice), a przypadek nieparzysty
wymaga: a = 521 = |k/2], b= £ = [k/2] (réwnoé¢ jest
niemozliwa, wobec nieparzystosci, wiec réznica b —a = 1
jest optymalna). Tak okreslone prostokaty bedziemy
nazywaé wypchanyms.

lz] (podloga z x) to najwicksza liczba calkowita nie wigksza od x,
natomiast [z] (sufit z x) to najmniejsza liczba catkowita nie

mniejsza od x. Dla kazdej liczby rzeczywistej x zachodza nieréwnosci
r—1<|z]<z< [z] <az+1.

Zauwazmy, ze jesli n komérek mozna umiesci¢

w prostokacie ograniczajacym o obwodzie 2k, to mozna
je umiesci¢ w wypchanym prostokacie o takim samym
obwodzie. Teraz musimy tylko wyznaczy¢ najmniejsze k,



dla ktérego wypchany prostokat o obwodzie 2k ma pole
cO najmniej n.

Prostokat ograniczajacy figury realizujacej minimalny obwéd dla
danego pola nie musi by¢ wypchany. Wazne, ze istnieje wéréd nich
(figur minimalizujacych. ..) cho¢ jedna o tej wlasnosci.

Niech k bedzie najwieksza liczba catkowita spelniajaca
k? < n. Wtedy albo n kafelkéw mieéci sie w prostokacie
kx(k +1), albo dopiero w kwadracie (k + 1) x

(k + 1). Pierwszy przypadek oznacza, ze k? <

n < k? + k, co po pomnozeniu przez 4 daje 4k% <

4n < 4k? + 4k. Jedli z prawej strony dodamy 1, to
nieréwno$é¢ bedzie zachowana, a zyskamy mozliwosé
zwiniecia do kwadratu: (2k)? < 4n < (2k + 1), czyli

2k < v/4n < 2k + 1. To oznacza ni mniej, ni wiecej,

tylko [2/n| = 2k + 1. Drugi przypadek jest analogiczny.

Wiedzac, ze k? + k < n < (k + 1)?, ponownie mnozymy
przez 4 i otrzymujemy, ze (2k +1)? < 4n < (2k + 2)2.
Dodajac 1 do 4k? + 4k, pozornie straciliémy silna
nieréwnogé, ale zauwazmy, ze (2k + 1)? jest liczba
nieparzysta, czyli réwnoé¢ jednak nie moze wystapic.
Po spierwiastkowaniu otrzymujemy [2/n] = 2k + 2.
W obu przypadkach sufit z podwojonego pierwiastka

SN WA
KRR

Ksztalty utozone z 1-5 tréjkatow
réwnobocznych. Nazywa si¢ je
»poliamondami”, poniewaz po angielsku
dwa trojkaty tworza ,,di-amond”

(karo, ¢). Jako ze ,diament” nie jest

w Polsce zwyczajowa nazwag rombu,
mogliby$my nazywaé konfiguracje
tréjkatéw ,poliapezami”, skoro trzy
tworzg ,tr(i)-apez”. ..

bardziej:

okazuje sie potowg obwodu odpowiedniego wypchanego
prostokata, czyli ostatecznie minimalny obwdd dla n
kwadratowych kafelkéw wynosi 2[2/n].

Na koniec jeszcze krotka uwaga: jak ten wzér mozna
szybko wyprowadzi¢ metoda ,,na chtopski rozum”.
Mozna odgadnaé (formalny dowéd mamy zreszta

za soba), ze dla n bedacych kwadratami wartosé
minimalnego obwodu wynosi 4/n. Pozostaje ustalié¢, jak
zaokraglamy powyzsza liczbe, gdy nie jest calkowita.
Obwdd musi by¢ parzysty, ponadto przyjmijmy, ze
zaokraglamy w gore. Takie zaokraglanie (do nie
mniejszej liczby parzystej) ma postaé 2[x/2] (prosze
sprawdzi¢), co po podstawieniu z = 4,/n daje ,nasz
wzor”.

Jako przedsmak przyszlej odstony przygody z obwodami
sprébujmy teraz poukladaé kafelki w ksztalcie
rownobocznych trojkatow. Zabawa nimi jest nieco
trudniejsza, gdyz brakuje tu tak wspaniatego
sprzymierzenca jak papier w kratke.

Istnieje papier w ,,tréjkatng kratke”, ale chyba nie kazdy ma go
w domu.

Tym razem jakakolwiek réznorodnos¢ pojawia sie dopiero przy czterech polach,
choé wszystkie trzy przypadki maja ten sam obwdd (6). Dla pieciu kafelkow
réwniez kazda konfiguracja daje taki sam obwdd (7). Do tego momentu
otrzymujemy bardzo przyjemny postep arytmetyczny, ale sze$é trojkatow
réwnobocznych pozwala nam zbudowaé szeSciokat foremny, ktérego obwod
wynosi 6. Okazuje sie, ze funkcja minimalnego obwodu dla kafelkow tréjkatnych
nie jest nawet monotoniczna!

Mozna by sie spodziewaé, ze dla duzych n obwdd ,okragltej masy” tréjkatdéw

zacznie zachowywaé sie ,normalnie”, ale w pewnym sensie ,skacze” jeszcze

v v v v v v v
3,4,5,6,7,6,7,8,9,8,9,10,9,10,11,10, 11,12, 11,12, 13, 12,13, 12, 13, 14, . ..

Dopelnieniem tego obrazu grozy jest jawny wzor:

n.

2 [2efE] -

Jego elementarne wyprowadzenie przedstawimy w czedci drugie;j.

Bryly rozpiete na krzywych

* Kontakt: gornicki590gmail.com

Jarostaw GORNICKI*

Znany juz w starozytnoéci problem izoperymetryczny:

Ktory z trojkgtow o ustalonym obwodzie ma najwieksze pole?

rozwiazemy elementarnie, korzystajac z nieréwnosci miedzy $rednimi.

Czytelnikéw, ktérzy nie znajg dowodu
tego faktu, zachecamy do wykazania go,
szczegblnie w uzywanym w tym artykule
przypadku trzech liczb.

Przypomnijmy, ze érednia geometryczna dodatnich liczb jest nie wieksza niz ich
Srednia arytmetyczna. Dla trzech dodatnich liczb x,y, z stwierdzenie to przybiera
postac:

1
Vryz < 3
wiec jesli x + y 4+ z = d, to iloczyn xyz ma wartosé najwieksza, gdy
rT=y=2z= %d, bo wtedy zyz = (%d) = [%(:c +y+2)]3.

(z+y+2),

Pole trojkata o bokach dlugosci a, b, c mozna tatwo obliczyé¢, korzystajac ze
znanego juz od I wieku wzoru Herona:

S=pp—a)(p—b)(p—c), gdzie p= %(a+b+c)7

dlatego przy ustalonym obwodzie a + b + ¢ warto$¢ S jest najwieksza, gdy
p—a=p—b=p—c,czyligdya=0b=c.

Wykazalismy wiec twierdzenie:
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Rozwigzanie problemu
izoperymetrycznego podane jest

w ksigzce: J. Gérnicki, Okruchy
matematyki, WN PWN, Warszawa 2009,
w artykutach Nierédwnosci, wypuklosé

i ekstrema oraz Wlasnosci ekstremalne
figur izoperymetrycznych.

Krzywsa nazywamy prostowalng, gdy
istnieje mozliwosé okreslenia jej dtugosci
jako granicy ciagu dlugosci tamanych
coraz lepiej ja przyblizajacych.

Rys. 2
D
¢ B
A F E A

Rys. 3. Sytuacja przed optymalizacja

Wieloscian to bryla ograniczona
plaszczyznami. Wieloscian jest wypukly,
gdy lezy po jednej stronie kazdej ze
swoich $§cian.

D C1 B, A
«
C
L B
A F E Aq

Rys. 4. Sytuacja po optymalizacji

Twierdzenie 1. Trojkgt o danym obwodzie ma najwieksze pole, gdy jest
rownoboczny.

Prawdziwy jest fakt ogélniejszy (znany juz w starozytnej Grecji):

Twierdzenie 2 (Zenodor, III/II w. p.n.e.). Wielokgt o ustalonym obwodzie ma
najwieksze pole, gdy jest foremny.

Problematyka ,ekstremalna” w przestrzeni tréjwymiarowej (czyli w przestrzeni
euklidesowej R?) jest odrobine bardziej klopotliwa. Naszym celem bedzie
rozwigzanie elementarnymi $rodkami nastepujacego problemu:

Problem. Jaki ksztalt krzywej (prostowalnej) o dlugosci L zapewnia, zZe
najmniejszy zbior wypukly zawierajgcy te krzywg ma najwiekszqg objetosé.

Problematyka ta pojawila si¢ w XX wieku m.in. w pracach J. Egervary’ego,
M. Krejna, Z. Melzaka, A. Nudelmana, I. Schoenberga.

Czworoscian ekstremalny. Zacznijmy od prostej sytuacji. Lamana o czterech
wierzchotkach, ktore nie leza w jednej plaszczyznie, nazywamy szkieletem
czworo$cianu (rys. 1). Nasz problem w tym przypadku ma postaé: jaki szkielet
ABCD o danej dtugosci AB + BC + CD = L rozpina czworo$cian ABC D

o najwiekszej objetosci?

Rozwiazemy ten problem, sprowadzajac go do oméwionego juz problemu
izoperymetrycznego na plaszczyznie. Przyjmijmy, ze w czworoscianie ABCD
dlugosé boku AD jest réwna h (oczywiscie h < L). Niech II bedzie plaszczyzna
prostopadla do boku AD zaczepiong w punkcie A. Wtedy rzut prostopadty
czworoscianu ABCD na plaszczyzne II jest trojkatem AEF (rys. 2).

Lemat 1. Objetosé V' czworoscianu ABCD dana jest wzorem
1
gdzie h jest diugoscig boku AD, a S jest polem trojkgta AEF .

Czworosciany ABCD i ABF D maja wspolng $ciane — tréjkat ABD. Poniewaz
punkty C i F' sg w takiej samej odlegtosci od ptaszczyzny tréjkata ABD,

wiec objetosci tych czworoscianéw sa réwne. Podobnie czworosciany ABE D

i AEFD maja wspolng $ciang — tréjkat AFD. Punkty B i E sa w takiej samej
odleglosci od plaszezyzny tréjkata AF D, wiec objetosci tych czworoécianéw sa
réwne. Zatem czworosciany ABCD i AEF D maja réwne objetosci, a objetosé

czworoécianu AEF D wyraza si¢ wzorem (1). O

Lemat 2. Szkielet ABCD o dilugosci L i odleglo$ci AD = h (h < L) rozpina
czworoscian ABCD o najwiekszej objetosci, gdy boki AB, BC, CD majg réwne
diugosci i tworzq z odcinkiem AD kqty rowne o = arc cos %

Zgodnie ze wzorem (1) objetosé V' czworoscianu ABCD bedzie najwigksza, gdy
najwieksze bedzie pole S, bo h jest ustalone. Musimy wiec okresli¢ dlugosé

i polozenie w przestrzeni bokéw AB, BC' i CD tak, aby pole tréjkata AEFE bylo
najwieksze. Zgodnie z twierdzeniem 1 osiagniemy to, jesli zmaksymalizujemy
obwdd tréjkata AEF, jednoczesnie sprawiajac, ze bedzie to tréjkat réwnoboczny.

Bryla DABEFC jest wieloScianem wypuklym o podstawie tréjkatnej i Scianach
bocznych prostopadtych do ptaszczyzny II.

Rozetnijmy ten wielo$cian wzdluz pionowych krawedzi DA, BE, C'F oraz
pozostatych krawedzi szkieletu. Teraz potézmy éciany DAFC, CFEB, BEA
na plaszczyznie II na zewnatrz tréjkata AEF. Nastepnie przesufimy je w taki
sposé6b, aby polaczyé je pasujacymi do siebie bokami (rys. 3).

Odcinek AA ma dlugo$é réwna obwodowi tréjkata AEF, utworzonego z rzutéw
prostopadlych odcinkéw DC, CB, BA na plaszczyzne II. Rzuty te beda w sumie
najdiuzsze, gdy punkty D,C, B, A (rys. 3) beda lezaly na jednej prostej. Bedzie
ona nachylona do odcinka DA pod katem « = arc cos% (rys. 4). Warunki

AF = FE = FEA zapewnimy, gdy boki DC, CB, BA szkieletu ABCD beda

tej samej dlugosci. Ten opis jednoznacznie wyznacza polozenie wierzchotkéw
czworo$cianu: na plaszczyznie Il stawiamy prawidlowy graniastostup tréjkatny,
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ktérego pionowa krawedZz DA = h (A € II), a podstawa ma obwdd réwny

V' L? — h2. Kolejne odcinki DC, CB, BA lezg na kolejnych $cianach bocznych
graniastostupa, tworzac za kazdym razem kat o = arccos % z odcinkiem DA
(oczywiscie ten sam efekt uzyskamy, gdy kolejne odcinki AB, BC, CD beda
tworzyly za kazdym razem kat a z odcinkiem AD). Tak utworzony szkielet
ABCD o dhugoéci L i odlegtosci DA = h (h < L) rozpina czworoscian ABC'D

o najwiekszej objetosci. O

Objetosé tak okreslonego czworoscianu, zgodnie ze wzorem (1), jest réwna

V= % - h(L? — h?), gdzie 0 < h < L. Latwo sprawdzamy, Ze przyjmuje ona

warto$¢ najwigksza dla h = %, wiec czworoscian ekstremalny ma objeto$é réwna

1
162

rownag

L3 2~ 0,006 - L3. Co ciekawe, czworoécian foremny o krawedzi % ma objetosé

V2

357 ° L? 20,0044 - L2, czyli istotnie mniejsza niz czworoécian ekstremalny.

Udowodniliémy wiec nastepujace twierdzenie o czworoscianie ekstremalnym:

Twierdzenie 3. Szkiclet ABC'D o diugo$ci L rozpina czworoscian
o najwieckszej objetosci, gdy kolejne boki AB, BC, CD lezqg na kolejnych
Scianach bocznych prawidlowego graniastostupa trojkgtnego o pionowej krawedzi

AD = % 1 obwodzie podstawy \/g L, a kazdy z odcinkow AB, BC, CD tworzy

. _ 1
z krawedzig AD kgt o = arccos 7

Wieloscian ekstremalny. Uogélnijmy teraz rozwazania dotyczace
czworo$cianu ekstremalnego na wielosciany o wigckszej liczbie wierzchotkdw.
Lamana AgAi1As... A, (n > 3), dla ktérej kazda plaszczyzna przechodzaca przez
punkty Ag i A, (Ao # A,,) ma nie wiecej niz jeden punkt wspdlny z tamana
Ay As ... A, 1, nazywamy szkieletem.

Przyjmijmy, ze szkielet AgA;1As ... A,_1 A, ma dhugoéé AgA; + A1 As +
...+ A, 1A, = L, a dlugosé odcinka AgA,, jest réwna h (h < L). Tréjkatne
éciany AOAlA'r“ AoAlAQ, AOA2A3, ceny AOAn—lAn oraz AnAn—1A07

A A1 Ay, Ay AsAs,. .., AL A, oA, 1 wycinaja w przestrzeni R? wielocian
ApA1As ... A1 A, rozpiety przez szkielet AgA1As. .. An—1 A, (rys. 5).

Niech II bedzie plaszczyzng prostopadia do odcinka AgA,, zaczepiong w punkcie
Ap. Wtedy rzut prostopadly wieloScianu AgA;As ... A,_1 A, na plaszczyzne I1
jest n-katem AgAjA,... A, | opolu S, (rys. 5).

Poniewaz wielo$cian AgA1As ... A,_ 1A, jest skonczong suma czworoscianow
AoAlAgAn, AoAQAgA»,“ ceey AOAn—ZAn—lAna a do kaZdego z nich ma
zastosowanie lemat 1, wiec prawdziwy jest nastepujacy rezultat:

Lemat 3. Objetosé Wy, 1 wieloscianu AgA1As ... An_1A, dana jest wzorem

1
(2) Wit = ghs'ru
gdzie/ h/jest dliugoéciq odcinka AgAy,, a Sy, jest polem n-kgta
AoA1Ay. . A, 4.

Korzystajac z twierdzenia 2 (Zenodora) oraz powtarzajac rozumowanie
uzasadniajace lemat 2, uzyskujemy nastepujaca konstrukcje maksymalizujaca
objeto$¢ wieloscianu AgA1As ... A, 1A, rozpietego na szkielecie

AgAi1Ay ... A1 A, o dlugodei L i odleglosci AgA,, = h (h < L): na plaszczyZnie
II stawiamy prawidlowy graniastoshup n-katny o pionowej krawedzi AgA, = h
(Ao € II), ktérego podstawa ma obwdd réwny ' L? — h2. Kolejne odcinki AgAq,
A Ag, ..., A1 A, leza na kolejnych $cianach bocznych graniastostupa, tworzac
za kazdym razem z odcinkiem AyA, kat o = arccos %

Poniewaz pole n-kata foremnego (n > 3) o boku dtugosci a i kacie srodkowym
v = %’T dane jest wzorem S, = %na2 ctg 3, wiec ze wzoru (2) objetoéé wielodcianu
ApA1As ... A1 A, (ktérego rzut prostopadly na plaszezyzne IT jest n-katem
foremnym) dana jest wzorem W, 11 = 75 - h(L? — h?) - L ctg Z. Objetosé ta

1
jest najwieksza, gdy h = %, i wéwezas Wy, = ﬁL?’ - Letg ~. Mamy wigc

n
twierdzenie:
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ApA, = % 1 obwodzie podstawy
An_1 A, tworzy z krawedzig AgA,, ket a = arc cos 7

Twierdzenie 4. Szkielet AgA; ... A, o diugo$ci L rozpina wielo$cian
o najwiekszej objetosci, gdy kolejne boki AgAq,. ..
Scinach bocznych prawidlowego graniastostupa n-kgtnego o pionowej krawedzi

yAn_1A, lezg na kolejnych

\/g - L, a kazdy z odcinkow AgAy, A1As, ...,
1

Srubostozek podwdjny. Mozemy teraz przejéé do rozwiazania naszego
oryginalnego problemu. Z geometrii rézniczkowej wiemy, ze krzywa przestrzenna
lezaca na powierzchni walca jest linig $rubowa wtedy i tylko wtedy, gdy styczna
do niej w kazdym jej punkcie tworzy staly kat z kierunkiem osi walca. Zatem
gdy liczba n bedzie rosta nieograniczenie, to prawidlowe graniastostupy n-katne

L

coraz ,,Scidlej” beda przylega¢ do walca o wysokosci BA = <= i promieniu

V3

podstawy %\/a (rys. 6), a tamana BAj Ay ... A,,_1 A (ktérej kolejne odcinki
tworzg staly kat a = arc cos % z odcinkiem AB réwnoleglym do osi walca) coraz

dokladniej bedzie aproksymowaé krzywa lezaca na powierzchni bocznej walca,

Jesli na prostokatnym arkuszu papieru
narysujemy prosta, ktéra nie jest
prostopadla do ktéregokolwiek brzegu,

i nawiniemy ten arkusz na walec

o podstawie kolowej, to narysowana linia
prosta przybierze ksztalt linii Srubowej.
Gdy $rodek podstawy walca o promieniu
%\/5 jest $érodkiem kartezjanskiego

P
n—o00

rowna lim W, =
uktadu wspéirzednych (o$ walca pokrywa n—00
sie z osig 0Z), to linia $rubowa o skoku
%, lezaca na powierzchni bocznej walca

dana jest rownaniami parametrycznymi:

z(t) = %\/g -cost, y(t) = %\/5 - sint,
2(t) = =L~ - t, gdzie 0 < t < 27 oraz

273
B = (2(0),y(0), 2(0)),
A = (xz(27),y(2m), z(2m)) (rys. 6).

ktéra jest jednym zwojem linii $rubowej (helisy) o skoku %

L

Jedli punkt M porusza sie po linii érubowej, to odcinki BM oraz AM zakreSlaja
powierzchnie stozkowe i powstaje bryla $rubostozek podwdjny (rys. 6). Poniewaz
lim %ctg T = L wiec objetosé¢ tak powstalego srubostozka podwéjnego jest

3 73
s [P~ 0,01 L7,

Ostatecznie otrzymujemy rozwiazanie postawionego problemu:
Twierdzenie 5 (J. Egervary, 1949). Sposréd wszystkich bryl rozpietych na

gladkiej krzywej o dlugo$ci L najwiekszq objetosé ma bryla bedgca otoczkg
wypuklq jednego zwoju linii srubowej o skoku % na powierzchni walca kotowego

0 promieniu podstawy %\/6'

»Sir Roger Penrose. Geniusz i jego droga do rzeczywistosci”

Ksiazka ,,Sir Roger Penrose. Geniusz i jego droga
do rzeczywistosci”” autorstwa Patchena Barssa to
opowies$¢ o jednym z najoryginalniejszych umystow
XX wieku, matematyku, fizyku i filozofie. Autor
ukazuje swojego bohatera w gronie wybitnych postaci
$wiata nauki i sztuki, a zarazem na tle Srodowiska,

z ktérego wyrastal. Rodzina Penrose’éw to ludzie
utalentowani, ktérych pasja intelektualna ksztaltowalta
atmosfer¢ domu — choé dziecinstwo Rogera nie byto
wolne od trudnosci w przestrzeni emocjonalnej — to
wladnie w tym Swiecie rodzil sie jego niezwykly sposéb
myslenia.

Podczas lektury tej biografii czytelnik przenosi sie

w fascynujacy swiat idei, teorii i odkry¢. Ksiazke

czyta si¢ jednym tchem — to dynamiczny strumien
faktéw biograficznych, przeplatajacych sie z refleksjami
0 nauce, matematyce i naturze poznania. Niekoniecznie
trzeba byé znawca fizyki teoretycznej, aby czerpaé
przyjemnosé z lektury, podazajac za bohaterem w jego

»,podrézach” po tajemniczych strukturach Wszech$wiata.

Prawda i piekno to motywy wiodace, sita napedowa

w poszukiwaniach Rogera Penrose’a — to pojecia, ktére
laczy w swojej naukowe]j i filozoficznej refleksji. Sam
uczony mowi o procesie odkrywania w sposéb ujmujacy
prostota i szczeroscia:

»A gdy ulegamy fascynacji jakims zagadnieniem,
kierujemy si¢ jego wewnetrzng estetyka. Czasami
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okazuje sie, ze to, czym sie zajmowaliSmy, mozna
wykorzysta¢ w jakim$ innym obszarze, ale w wielu
przypadkach tak nie jest. To jedna z najwspanialszych
cech matematyki. [...] Czesto robimy co$ bez zadnego
powodu, tylko dlatego, ze mamy na to ochote, i wlasnie
dzieki temu dokonuje sie postep, ktory w przeciwnym
razie nigdy by nie nastapil” [s. 289].

Wspélpracownicy Penrose’a wspominaja jego
nieprawdopodobny, niemal mistyczny sposéb myslenia:
,,Odkrycia Penrose’a wygladaja tak, jak gdyby byty
dzietem jakiej$ nadludzkiej formy Zycia”. Barss nie
pomija jednak bardziej ludzkich watkéw — trudnosci
w relacjach, napie¢ emocjonalnych i dylematow, ktore
towarzyszyly uczonemu w zyciu osobistym. To postaé
z krwi 1 kosci... W ksiazce czytamy o jego ludzkich
ograniczeniach, problemach z kobieta, ktéra poslubit,
oraz jego ,muzami” — wybrankami jego potrzeby
tworczej. Dzigki temu portret Penrose’a zyskuje glebie
i wiarygodnosé.

»Roger Penrose” to opowiesé o czltowieku, ktory

calte zycie prébowat dotrzeé¢ do skraju ludzkiego
pojmowania rzeczy. Ksiazke polecam wytrawnym
poszukiwaczom prawdy w fizyce, poszukiwaczom
estetyki w matematyce, a przede wszystkim
wielbicielom emocji zwiazanych z odkrywaniem prawdy
o zyciu wybitnych ludzi.

Marzanna WAWRO



* Wydzial Chemiczny, Politechnika Slaska

w Gliwicach

O manewrze Hohmanna pisal réwniez
Grzegorz Derfel w ASO. Ciekawemu
Czytelnikowi polecamy zajrze¢ do
wspomnianego artykutu, ktéry opisuje
réwniez manewr dwueliptyczny.

A’L}Q

Manewr transferowy Hohmanna:
z niskiej orbity ziemskiej na Marsa

Przemystaw BORYS*

O manewrze Hohmanna styszal kazdy, kto ogladal film lub czytal ksiazke
Marsjanin. Tym wtasnie sposobem odbywaly sie tamtejsze przeloty miedzy
Ziemia i Marsem. Manewr ten polega na przeniesieniu pojazdu kosmicznego

z jednej orbity kotowej na inna z wykorzystaniem ,transferowej” orbity
eliptycznej. Takiej drogi nigdy nie pokonuje sig, lecac w linii prostej i hamujac
dopiero u celu — byloby to marnotrawstwo energii. Jak si¢ zaraz przekonamy,
w manewrze Hohmanna czasami w ogdle nie ma potrzeby hamowania

(w najprostszej wersji tylko sie przyspiesza).

W manewrze Hohmanna wykorzystuje sie dwie sekwencje wlaczania silnikéw,
generujace przyrosty predkosci Av; w perycentrum oraz Ave w apocentrum
(rysunek obok). Aby okresli¢ wielkosci skokéw Awvy i Ave, skorzystamy z zasady
zachowania energii na orbicie:

2 T
Roéwnanie to szczegdlnie latwo jest analizowa¢ w apocentrum i perycentrum
orbity eliptycznej — punktach najwiekszego zblizenia do ogniska i najwiekszego
oddalenia (aphelium 79 i peryhelium r; dla cial krazacych wokét Storica).
7 zasady zachowania energii:

mv;  GMm  mvi GMm

2 T1 2 T2
Ponadto w tych punktach (na rysunku: punkty, w ktorych zadaje si¢ impulsy
predkosci) predkosé jest prostopadia do promienia, dzigki czemu mozna tatwo
obliczy¢ iloczyn wektorowy dla momentu pedu:
muiry = Mmuvarsy.

Z podstawienia powyzszego réwnania do poprzedniego (w celu
wyeliminowania v ):

— _|_ —
= 2. (ry 7"2)27‘1 r2) —oqM . TA T2
1 r1ro

Poniewaz dla elipsy 71 + 72 = 2a (dwukrotna wielkosé pélosi wielkiej), po
skréoceniu (r1 — 79)/r; mamy:
GMry  GM(2a—ry) 2GM  GM

2
Vo = =
2 a 1o () T2 a

Korzystajac z powyzszego réwnania, mozemy wyznaczy¢ wartosé catkowitej
energii ciala na orbicie o danej dtugosci wielkiej pétosi:
mvi GMm GMm GMm GMm GMm

FE = — = —
2 ro T 2a T 2a

Podstawiajac te wartosé do zasady zachowania energii przytoczonej na poczatku
i skracajac mase, uzyskujemy tzw. rédwnanie vis-viva (w jezyku polskim
tlumaczone niekiedy jako ,calka sity zywej”):

(%) v2:GM<2—1>.

rooa
Za pomoca tego réwnania mozna latwo znalezé przyrosty predkoéci potrzebne do
zmiany orbity. Jezeli poczatkowo jesteSmy na orbicie kotowej, to a = r = r;.
Potem przechodzimy na orbite eliptyczna, gdzie a = (r1 + r2)/2. W koricu
docieramy do perycentrum elipsy (ew. apocentrum, jesli planujemy obnizy¢
orbite), gdzie znowu promient réwny jest pélosi: a = r = ro.
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https://deltami.edu.pl/2020/08/z-orbity-na-orbite/

Jako pozyteczne ¢wiczenie dla
Czytelnikéw proponujemy obliczenie
przyrostu Avs z wykorzystaniem orbit
hiperbolicznych, oméwionych w Aég
Wystarczy wyznaczy¢ parametr zderzenia
dla minimalnego zblizenia do samej
powierzchni planety, a nast¢pnie
wyznaczy¢ predkosé mijania planety

z zachowania momentu pedu.

Transfer z orbity ziemskiej na marsjanska

Policzmy przykladowe przyrosty predkosci podczas transferu na orbite Marsa
(orbita kotowa o promieniu ro = 229 mln km) z orbity ziemskiej o promieniu

r1 = 150 mln km). Orbity liczone sa wokét Slotica, wiec GMg = 1,3 - 10 km?® /s2.
Z réwnania (%) mamy:

_ ﬂ — =294km/s,
O
ora(r) \/1 3 1011 ﬁ 1507%229> =324km/s = Av; =3,0km/s,
v12(72) \/1’ 107} % 150_?_229> = 21,2km/s,
vy = % "5399 = 238km/s = Avy =2,6km/s,

przy czym vio to predkosé na orbicie eliptycznej taczacej orbity Ziemi i Marsa.

W praktyce transfer rzadko jest wykonywany z orbity ziemskiej poza polem
grawitacyjnym Ziemi i rzadko wejécie na orbite marsjanska zachodzi daleko

od Marsa. Rozpoczynajac misje na niskiej orbicie okoloziemskiej (Low Earth
Orbit — LEO), vpro = 7,9 kmm/s, musielibySmy sie po pierwsze wyzwolié¢ z pola
grawitacyjnego Ziemi (M = 5,97 - 10%* kg, r.go = 6371 km), a po drugie nadaé
sondzie predkosé transferows wzgledem Ziemi. Uwzgledniajac, ze dysponujemy
juz czescia energii kinetycznej, zwigzanej z ruchem po orbicie LEO, mozemy
rozpisaé zachowanie energii:

AE = - = :
2 2 TLEO 2 2

vLpo + Av =11,5km/s = Av =3,6km/s.

m(vLgo + Av)? mv%EO GMm B mv%EO n m(vyy —v1)?

Powyzsza zaleznodé energetyczna mozna wyrazi¢ w bardziej typowy sposob,
mianowicie: aby uzyskaé¢ predko$é¢ v, po uwolnieniu sie z pola grawitacyjnego
planety, przy zalozeniu predkosci ucieczki v = /2GM /R, trzeba nadaé
pojazdowi kosmicznemu predkosé:

D) v = /v +vX.

Predkosci mierzymy tu wzgledem planety — energia najpierw jest
wykorzystywana na pokonanie pola grawitacyjnego (w wielko$ci vyr?),

a pozostata czesé pozostaje zachowana w postaci energii kinetycznej. Jest

to ten sam wzdr, ktéry mamy wyzej dla AE. Zaniedbujemy tutaj efekty
oddzialywania ze Stonicem i w tym przyblizeniu zajmujemy si¢ orbita
hiperboliczna (w odleglosciach pojedynczych milionéw kilometréw od planety
mozmy zaniedbaé¢ zakrzywienie trajektorii zwigzane z oddzialywaniem ze
Stonicem, co upraszcza analize!).

Zal6zmy teraz, ze docieramy w okolice Marsa i zastanawiamy sie, jak
skorygowaé¢ predkosé, aby zostaé przez niego przechwyconym i wej$é na jego
orbite. Skorzystamy z réwnania (xx) laczacego predko$é orbitalna z predkoscia
ucieczki i predkoscia v, tym razem dla danej predkosci zblizenia do planety,
Voo = Vg — v12(12) = 2,7 km/s. Predkosé ucieczki z Marsa, ktérego masa wynosi
M4y =6,39- 10?3 kg, a promien re = 3390 km, to:

2G M

Ty

Vg = = 5,0km/s.

W efekcie, po przechwyceniu przez grawitacje planety, przy zatozeniu
maksymalnego zblizenia az do odlegtosci r 4, predko$¢ na orbicie hiperbolicznej
(w przyblizeniu zaniedbujacym oddzialywanie ze Storicem) wyniesie:

v =1/5,02+2,72 =57km/s.
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Odejmujac od tego wyniku predko$é orbitalng Marsa (3,6 km/s), uzyskujemy
wartos¢ drugiego skoku predkosci:

Avy =v — vy » = 2,1km/s.

W konsekwencji catkowity ,budzet delta-v” dla wyprawy na Marsa wynosi:
3,64+ 2,1 =5,7km/s.

Aby blizej uswiadomié¢ sobie zwigzek modelowania wejscia na orbite z orbitami
hiperbolicznymi, warto spojrze¢ na powyzszy rysunek, gdzie Mars orbituje po
okregu, a kotowa orbite przecina elipsa Hohmanna. Pod wplywem grawitacji
Marsa w poblizu planety elipsa (tak naprawde w tej skali i elipsa Hohmanna,

i kolo orbity Marsa wygladaja jak linia prosta!) ugina sie i przypomina lokalnie
hiperbole. Dzigki impulsowi predkosci z hiperboli wchodzimy na orbite kotowsa,
wokdl Marsa.

Zamiast takich obliczen latwiej jest wykorzysta¢ tzw. mapy delta-v — tabele
skokéw predkosci niezbednych do dotarcia z punktu startowego do docelowego.
Na takiej mapie rozpoczynamy sumowanie czynnikéw, np. od orbity LEO na
Ziemi, a konczymy na LMO nad Marsem.

Strefy oddzialywan planet

Mapy delta-v sg do$¢ czytelne, ale watpliwosci moze wzbudzi¢ pojecie
»przechwycenia” czy ,wejécia w sfere oddzialywania” planety. Sfera
oddzialywania definiowana jest jako miejsce, gdzie pojazd kosmiczny — pomiedzy
planeta a Slonicem (czy ogdlniej: pomiedzy mniejszym ciatem niebieskim
a dominujacym cialem niebieskim) — odczuwa zerowa sile wypadkowa grawitacji
oraz odsrodkowa:
GMm GMgom
7 +mw2(r1 — R) — ﬁ
r1 oznacza tu promien orbity planety, a R to odlegltoéé¢ strefy oddziatywania od
planety.

:0’

Poniewaz orbitalna predkosé katowa planety wynika z rownowagi sity
odsrodkowej z przyciaganiem Slonca:
w'r, = 5 -
L1
Jednoczes$nie réznica dwbch ostatnich cztonéw wzgledem punktu réwnowagi
w r1 jest mala, i aby uprosci¢ rachunki, mozna skorzysta¢ z nastgpujacego

przyblizenias: p R
1 1 1 1
—sr5—-R|— |5 ]| =5+2=5.
" ()] A
Mamy zatem:

GM GM, GM, GM, GM,
R? i Y ri 1

I stad mozemy wyznaczy¢ promien sfery oddzialywania dla Ziemi:

| M
R:7”13 m:].,&—)mln km.
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ktualnosci (nie tylko) fizyczne
Tysigc kotéow

Tle kotéw jest na Swiecie? Wikipedia podaje szacunkowe liczby miedzy
600 milionéw a miliardem, ze Stanami Zjednoczonymi na czele wzgledem
liczby kotéw zawlaszczajacych gospodarstwa domowe, jednak zrédla tych
danych pozostaja niejasne.

Mozna pokusié¢ si¢ o mniej powazne pytanie: ilu jest fizykéw na swiecie? Od
razu wpadamy tutaj w drobna pulapke, no bo jak dokladnie zdefiniowaé fizyke
i fizyka. A ze jest to sprawa wielkiej wagi, to wiem z wlasnego doswiadczenia,

z posiedzen komisji habilitacyjnych, ktére potrafia zaciekle dyskutowaé, ile fizyki
jest w fizyce.

Zalézmy jednak, ze interesuje nas oszacowanie rzedu wielko$ci liczby fizykow

i namyst, jak zmienita sie ona w ciagu ostatniego stulecia. Znane zdjecie

z piatej konferencji Solvaya z roku 1927 ukazuje grupe 29 fizykéw, z ktorych
siedmioro otrzymalo wczeéniej lub pdzniej Nagrode Nobla, co stanowi podstawe
publicznego przekonania, ze byla to wéwczas liczba bardzo mata. Jednak
publikacje American Institute of Physics podaja tu liczbe kilku tysiecy, opierajac
sie na liczbie istniejacych na uniwersytetach katedr fizyki, z zalozeniem, ze
kazda miata na pewno swojego profesora, ktory zarzadzal co najmniej jednym
asystentem.

A dzisiaj? W przeciwienistwie do kotéw, dane sa trudniejsze do pozyskania,
jednak raz pozyskanymi tatwiej jest zarzadzaé. Unia Europejska miata

w 2023 roku, wedlug danych Eurostatu, 2,15 miliona naukowcéw, wiec,
przyjmujac robocze zalozenie, ze 10% z nich to fizycy, otrzymujemy wynik
215 tysiecy. Udziatl fizykéw w populacji naukowcéw jest, oczywiscie, swego
. rodzaju zgadnieciem, polegajacym na codziennym do$wiadczeniu autora,
wspartym jednak przesadami innych oséb probujacych odpowiedzieé na
postawione tutaj pytanie.

W przypadku innych krajéw mozemy wykorzysta¢ dane Global Innovation Index
podajace liczbe naukowcéw na milion mieszkancow. W tym wskazniku prym
wiedzie Korea Poludniowa z wynikiem 7980, co przeklada sie na 41 tysiecy
fizykow. Na drugim miejscu sa Stany Zjednoczone, dla ktorych stosunek ten
wynosi 4450, wiec mozemy zaryzykowaé stwierdzenie, ze mieszka tam 150 tysiecy
fizykow. Swoja droga, na Quantum Summit India, ktéry odbyt sie w lipcu

2025 roku w Bengaluru, Duncan Haldane i David Gross, obaj laureaci Nagrody
Nobla z fizyki, wskazali, ze wysoki wynik amerykanskiej nauki opiera sie

na silnym drenazu mézgéw z innych czesci Swiata, zwlaszcza z Indii, ktére

ze wskaznikiem 255, zreszta malejacym w czasie, dostarczajg $wiatu tylko

37 tysiecy fizykéw. W liczbach bezwzglednych przoduja Chiny z do$¢ wysokim
stosunkiem na poziomie 1850 i duza liczba ludnosci, co pozwala sadzié, ze jest
tam okolo 260 tysiecy fizykdw.

Powtarzajac to ¢wiczenie dla najludniejszych krajéw swiata, dochodzimy do
liczby 900 tysiecy, wiec przy naszej doktadnosci mozna dla lepszego efektu
powiedzie¢, ze na $wiecie zyje okolo miliona fizykdw.

Duzo to czy malo? Na pewno wynik ten wskazuje na ogromne zwiekszenie
dostepnoéci szkolnictwa wyzszego, co w polaczeniu ze dwuipéltkrotnym wzrostem
liczby ludnoéci w ciagu ostatniego stulecia przetozyto sie na wzrost liczby
uniwersytetéw. W koncu, przyjety na swiecie model edukacji zaklada, ze
moralne prawo do ksztalcenia studentéw wywodzi si¢ z prowadzenia badan
naukowych.

W kazdym razie, nie pomyli sie zanadto, kto powie, ze na jednego fizyka
przypada globalnie jakie$ tysiac kotéow. Przy ostroznym zalozeniu, ze fizyk
jest spotecznie co najmniej tak samo uzyteczny jak kot, wciaz jesteSmy po
bezpiecznej stronie.

Kraysztof TURZYNSKI
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Olimpiada Sztucznej Inteligencji

Witold DRZEWAKOWSKIY™, Kamil KSIAZEK?T,
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*Komitet Gléwny OAI

fKomitet Merytoryczny OAI

o

Zadanie z gra w trzy kubki wymagalo
$ledzenia obiektéw wystepujacych
w filmie

Halucynacje Al to zjawisko, w ktérym
sztuczna inteligencja generuje falszywe
lub nieprawdziwe informacje, prezentujac
je jako fakty. Powstaja one, poniewaz
modele AI przewiduja najbardziej
prawdopodobne odpowiedzi na podstawie
wzorcéw w danych treningowych, a nie na
prawdziwym zrozumieniu rzeczywistosci,
co moze prowadzi¢ do zmyslania faktéw,
dat, a nawet zrodet.

Sygnal EKG ze zbioru treningowego

Sztuczna inteligencja coraz $mielej wkracza w nasze codzienne zycie — modele
jezykowe sa podstawsg dzialania chatbotéw, silniki grajace w szachy pomagaja
zarowno w szkoleniu poczatkujacych graczy, jak i arcymistrzow, systemy
wnioskowania rozwigzujg skomplikowane zadania matematyczne. Za tym
wszystkim stoja réznorodne algorytmy uczenia maszynowego i ogromne iloéci
danych. Jak to wszystko dziala? Co stoi u podstaw tych systeméw? Jak sa one
zbudowane? Olimpiada Sztucznej Inteligencji (OAI) zostala stworzona wladnie
dla os6b zainteresowanych tym obszarem wiedzy i technologii.

Co to jest OAI? Olimpiada Sztucznej Inteligencji to ogdlnopolskie zawody
adresowane do uczniéw szkél ponadpodstawowych i podstawowych. Obecnie
trwa III edycja Olimpiady, kolejna rozpocznie si¢ w roku szkolnym 2026,/2027.
Wzorem innych olimpiad, takich jak matematyczna i informatyczna, OAI
sklada sie z trzech etapow: I etapu zdalnego, II etapu lokalnego oraz III
etapu finalowego. W roku szkolnym 2025/2026 I etap rozpoczal si¢ 1 grudnia
2025 roku i zakonczy sie 25 stycznia 2026, II etap odbedzie sie w dniach

6-8 marca 2026 roku w czterech miastach: Krakowie, Poznaniu, Warszawie

i Wroctawiu. Final bedzie mial miejsce od 17 do 19 kwietnia 2026 roku

w Poznaniu. OAI jest wspierana przez Ministerstwo Edukacji Narodowej. Jej
organizatorem jest Fundacja Edukacji i Rozwoju Sztucznej Inteligencji oraz
wydzialy matematyki i informatyki uniwersytetéw Jagiellonskeigo, im. Adama
Mickiewicza, Warszawskiego i Wroclawskiego.

Jak wygladaja zadania? Zadania inspirowane sa realnymi problemami
pojawiajacymi sie¢ w przemysle i nauce. Uczestnicy musza przeanalizowaé duzy
zbiér danych i znalezé w nim ukryte zaleznodci, tworzac wtasny model sztucznej
inteligencji, np. sie¢ neuronowa. W poprzednich edycjach zadania dotyczyly
m.in. wykrywania nieprawidlowosci w sygnale EKG (ilustrujacym prace serca),
detekcji halucynacji w danych wygenerowanych przez duze modele jezykowe,
czy predykcji sumy pieniedzy na zdjeciu z monetami. Jedno z zadan zwigzane
byto z analizg wideo przedstawiajaca gre w trzy kubki. Na filmach kubki byly
zamieniane miejscami, a zadaniem bylo wskazanie, na jakiej pozycji finalnie
znalazl sie kazdy kubek. Kolejne zadanie dotyczylo atakéw na modele Al,

aby ,zmusi¢” je do popelniania bledéw. Aby lepiej zilustrowaé, na czym moga
polegaé zadania, opiszemy bardziej szczegdélowo dwa z nich.

o Wykrywanie zaburzen sygnalu EKG (II OAI, 1. etap). W tym zadaniu
uczestnik dostaje zbiér danych zawierajacy syntetyczne sygnaly EKG, czyli
zapis pracy serca w czasie. Czeé¢ sygnalow EKG jest prawidlowa, a czeéé
odpowiada wybranym schorzeniom, np. migotaniu przedsionkéw. Zadaniem
uczestnika jest wyodrebnienie z fragmentéw EKG czterech liczbowych
cech sygnalu, ktore pozwola najlepiej przewidzie¢ obecnos$é schorzen.

Dobér cech jest oceniany przez jako$é wytrenowanego na ich podstawie
modelu uczenia maszynowego, ktérego uczestnicy nie moga zmieniaé. Im
lepsze cechy, tym dokladniejsze przewidywania modelu oraz wyzsza ocena
rozwiazania. Zadaniem uczestnikéw bylo odkrycie anomalii, ktére znajdowaly
sie tylko w szczegdlnych fragmentach sygnalu. Jedno z rozwiazan polegalo
na podzieleniu sygnalu EKG na fragmenty i usunieciu z niego odcinkéw
odpowiadajacych tzw. zespotowi QRS, reprezentujacemu gléwng aktywnosé
skurczowsg serca. Pozostale fragmenty, odpowiadajace sygnatowi pomiedzy
kolejnymi uderzeniami serca, zawieraly wiekszo$¢ anomalii i byly podstawa
dalszej analizy statystycznej. Badano miedzy innymi wartosci bezwzgledne
réznic miedzy kolejnymi odczytami w czasie, a ostateczne cechy bytly
konstruowane na podstawie ich odchylenia standardowego, Sredniej kroczacej,
amplitudy lub innych statystyk. Zaznaczamy, ze rozwiazanie nie wymagato
wiedzy medycznej, a cale niezbedne wprowadzenie, wtacznie z opisem zespotu
QRS, bylo przedstawione w tresci zadania.
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W powyzszym zadaniu nacisk postawiony byt na analize danych wejéciowych.
Model nie byl modyfikowany przez uzytkownika. Nie zawsze jednak tak jest.
Ponizej opiszemy zadanie z finalowego etapu, w ktérym nalezalo dotrenowac

dostarczony model sieci neuronowej.

o Stylizacja ttumaczenn maszynowych (II OAI, 3. etap). Uczestnicy
w ramach zadania dostali wytrenowany juz model niewielkich rozmiaréw
do ttumaczen z jezyka angielskiego na jezyk polski oraz zdania w jezyku
angielskim zawierajace specjalistyczne terminy z dziedziny uczenia

maszynowego. Dla kazdego z takich zdan zbior danych zawieral réwniez
liste wystepujacych w nich specjalistycznych terminéw oraz oczekiwane
tlumaczenie tego zdania na jezyk polski. Jednakze w tym tlumaczeniu
terminy specjalistyczne sa przetlumaczone inaczej niz dokonaltby tego
dostarczony model — stosowane sg polskie odpowiedniki, podczas gdy

celem tego zadania bylo pozostawienie angielskich terminéw. Zadanie

to wymagalo implementacji petli do wydajnego dotrenowania modelu

z uwzglednieniem nowoczesnych technik, takich jak zmiana tempa treningu
w ramach kolejnych etapéw poprzez zmniejszanie wspétczynnika uczenia,

z uwzglednieniem fazy ,rozgrzewki”. Takie rozwigzanie czesto nie skutkowalo
jednak maksymalng liczba punktéw. Kluczowa byla nastepujaca obserwacja:
aby skutecznie nasladowac styl ttumaczen obecny w zbiorze danych, model
musi opanowa¢ dwie umiejetnosei: (1) rozpoznawanie fraz specjalistycznych

oraz (2) odpowiednie tlumaczenie tych fraz. Uczestnicy, ktérzy to dostrzegli,
wykorzystali dodatkowa informacje dostepna w danych — listy stéw
kluczowych przypisane do kazdego zdania. Na ich podstawie oznaczali

w tekscie zrédlowym (angielskim) frazy specjalistyczne (np. za pomoca
znacznikéw <. . .>). Dzieki temu model nie musial samodzielnie uczy¢

sie, ktore wyrazenia wymagaja zmiany stylu, a ktore nie. Jego zadaniem
byto jedynie nauczy¢ sie, ze frazy oznaczone nalezy tlumaczy¢ zgodnie ze
specyficznym stylem, a w tlumaczeniu pomijaé¢ same znaczniki.

Wiele zadan wymaga obliczen na kartach graficznych
(GPU), do ktérych zapewniamy dostep podczas etapéw
stacjonarnych. Zadania sa w pelni automatycznie
oceniane na specjalnie przygotowanej infrastrukturze
systemu sprawdzajacego.

Dlaczego warto? Poza satysfakcja i Swietng przygoda
Olimpiada to szansa na rozwiniecie bardzo przydatnych
umiejetnosci oraz mozliwosé spotkania rowiesnikdw

z calej Polski zainteresowanych sztuczna inteligencja.
Na etapy lokalne i final zapraszamy naszych partneréw
i firmy wspierajace Olimpiade — jest wtedy okazja do
uczestniczenia w ciekawych wykladach i zobaczenia, jak
AT jest stosowana w praktyce. Finalisci majg ulatwiony
lub wolny wstep na coraz wigksza liczbe kierunkéw

na polskich uczelniach. Dla najlepszych uczestnikow
organizujemy ob6z naukowy, ktorego poprzednie edycje
odbywaly sie w Krzyzowej i Polanicy-Zdroju. Uczestnicy
poznaja tam bardziej zaawansowane zagadnienia, takie
jak modele dyfuzyjne w wizji komputerowej, sieci typu
transformer czy metody trenowania modeli jezykowych.
Co roku Olimpiada wylania polska reprezentacje

na zawody miedzynarodowe. Dotychczas odbyty sie
dwie edycje Migdzynarodowej Olimpiady Sztucznej
Inteligencji (ioai-official.org). W obu tych
olimpiadach nasza reprezentacja osiagneta wspaniale
sukcesy. Na ostatniej miedzynarodowej olimpiadzie

w Pekinie polska reprezentacja zdobyta 7 medali

(3 zlote, 3 srebrne, 1 brazowy), zajmujac w nieoficjalnej
klasyfikacji medalowej 2 miejsce na swiecie.
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Jak zaczac? Wszystkie potrzebne informacje,
materialy przygotowujace do Olimpiady, a takze
zadania z poprzednich edycji znajduja sie na stronie
oai.edu.pl oraz w mediach spolecznosciowych
Olimpiady. W ramach Olimpiady prowadzimy réwniez
réznorodne szkolenia. Przed I etapem organizujemy
cykl wykladow wprowadzajacych, podczas ktérych

od podstaw przedstawiamy zagadnienia z zakresu
uczenia maszynowego. Omawiamy m.in. podstawy
uczenia maszynowego, elementy wizji komputerowej

i przetwarzania jezyka naturalnego. Wprowadzamy
uczestnikéw do programowania w Pythonie, trenujemy
pierwsze sieci neuronowe, pokazujemy algorytmy
klasteryzacji, sieci konwolucyjne do rozpoznawania
obrazéw oraz wektory zanurzen stéw Word2Vec.

Warto podkresli¢, ze dla wiekszosci naszych uczestnikow
start w Olimpiadzie byt ich pierwsza przygoda z Al —
jestedmy jednak przekonani, ze jest to dopiero poczatek
ich fascynujacej podrézy.
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https://ioai-official.org/
www.oai.edu.pl

Klub 44 M
1-44

Termin nadsylania rozwigzan: 31 III 2026

Czotéwka ligi zadaniowej Klub 44 M
po uwzglednieniu ocen rozwigzan zadan
903 (WT = 1,45) i 904 (WT = 1,36)
z numeru 6/2025

Jerzy Cisto ‘Wroctaw 46,09
Szymon Kitowski 43,92
Barbara Mroczek 43,05
Andrzej Daniluk Warszawa 40,76
Mikotaj Znamierowski 40,68
Marian Lupiezowiec Gliwice 38,54
Krzysztof Kaminski Pabianice 38,09
Roksana Stowik 37,51
Michal Adamaszek Kopenhaga 37,30
Stanistaw Bednarek Lodz 37,24

Moment godny uwagi: pan Jerzy Cislo —
44 p. po raz osiemnasty!

Zadania z matematyki nr 913, 914
Redaguje Marcin E. KUCZMA

913. Niech m bedzie liczba naturalna nieparzysta. Wyznaczy¢ najwieksza
mozliwg liczno$é zbioru M, zawartego w przedziale [—m, m], zlozonego z liczb
caltkowitych, w ktérym kazda tréjka réznych liczb ma sume rézna od zera.

914. Znalezé wszystkie pary a, b liczb rzeczywistych réznych od zera, dla ktoérych
funkcja f: R — R dana wzorem f(z) = |sin(az)| + |cos(bx)| jest okresowa.

Zadanie 914 zaproponowal pan Witold Bednarek z fodzi.
Rozwigzania zadan z numeru 9/2025

Przypominamy tres¢ zadan:

905. Niech f(z) = 3 (:1:2 + 1)~ L Wyznaczy¢ wszystkie calkowite dodatnie wartodci sumy
f(a) + f(b) + f(c) dla dowolnych liczb catkowitych a, b, c.

906. W przestrzeni (tréjwymiarowej) dana jest parabola P. Niech R bedzie zbiorem wszystkich
punktéw, bedacych wierzchotkami stozkéw obrotowych, na ktérych lezy P [przez stozek obrotowy
rozumiemy tu powierzchni¢ powstala przez obrét prostej wokél przecinajacej ja (nie prostopadle)
innej prostej (osi obrotu)].

Udowodni¢, ze zbiér R takze jest parabolg oraz wyjasni¢, jak sa usytuowane jej wierzcholek i ognisko
wzgledem wierzchotka i ogniska paraboli P. [Wierzcholek paraboli to punkt jej przeciecia z osia
symetrii; ognisko to punkt (w jej plaszczyznie) okreslony przez wlasnos$é: kazdy punkt paraboli jest
jednakowo odlegly od ogniska i od pewnej prostej (zwanej kierownicq)].

905. Z uwagi na réwnosé f(z) = z — g(x), gdzie

g(z) = z(z® + 1), warunek zadania jest (dla liczb
caltkowitych a, b, ¢ > 1) réwnowazny temu, by suma

g(a) + g(b) + g(c) byla liczba catkowita. W przedziale
[1,00) funkcja g jest malejaca. Jej wartosci dla argumentéw
1,2,3,4,5,... wynosza, kolejno:

1 2 3 4 5
27 52 107 177 267 """

wiec jedyna mozliwg catkowity wartoscia wypisanej sumy
jest g(a) + g(b) + g(c¢) = 1. Przyjmijmy (b.s.0.), ze a < b < c;
wéwezas g(a) = g(b) > g(c) oraz g(a) > %, czylia =1 lub

a = 2. Dalej, musi by¢ g(b) > 2(1 — g(a)). Dlaa=1 oraz
dla a = 2 to daje, odpowiednio, g(b) > 1 oraz g(b) > - ;
w obu przypadkach to oznacza, ze b < 3.

Pozostaje sprawdzié, czy dla uzyskanych par (a,b)
(=(1,1), (1,2), (1,3), (2,2), (2,3)) réznica

1 — (g(a) + g(b)) jest mozliwg wartoscia g(c).

Jedynie dla a = 2, b = 3 tak jest; wtedy takze

c=31 g2 +gB)+9B) =2+ +2 =1, zas
f@)+fB)+f3)=2+3+3)—-1=7. To jedyna
mozliwa warto$¢ sumy f(a) + f(b) + f(c).

906. Ustalmy kartezjanski uktad wspéirzednych Oxyz,
w ktorym parabola P jest dana rownaniem y = m2,

z =0 (b.s.o, bo wszystkie parabole sg podobne). Ma

ona wierzcholek w = (0,0,0) i ognisko f = (0, ,0)
(kierownicag jest prosta = z =0, y = —1). Wezmy dowolny
stozek obrotowy C, na ktérym lezy P. Przyjmijmy, ze
wierzchotkiem stozka C' jest punkt po = (zo, Yo, 20).
Oznaczmy przez ¢ miare kata ostrego miedzy jego osia
obrotu i tworzaca i niech ¢ = cos ¢ (zatem 0 < ¢ < 1).

Niech u = (u, v, w) bedzie wersorem kierunkowym osi
obrotu, zorientowanym tak, by v > 0 (wersor to wektor

o dtugosci 1).

Dowolnie wybrany punkt przestrzeni p = (z,y, z) lezy na
stozku C' wtedy i tylko wtedy, gdy kat miedzy wektorami
P — Po oraz u ma miare ¢ lub ™ — ¢; czyli gdy jego kosinus
(dany znanym wzorem m ) jest réwny +c. Skoro
|[ul]| = 1, warunek ten po rozpisaniu na wspdlrzedne
przybiera postac

(1) u(z — o) +v(y — yo) + w(z — 20)
= +ey/(z —20)2 + (y — %0)2 + (2 — 20)2.
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Jest to wiec réwnanie powierzchni stozka C. Parabola P lezy
na niej, jesli po podstawieniu y = z*, z = 0 réwnanie (1)
jest spelnione dla kazdej liczby rzeczywistej x. Przez
podniesienie stronami do kwadratu wnosimy, ze zawieranie
P C C ma miejsce wtedy i tylko wtedy, gdy

(2) (u(w — x0) +v(z® — yo) + w(—zo))2
= 62((x —20) + (#® —yo)* + zg) dla z € R.

To réwnos$é dwoch wielomianéw zmiennej x, czwartego
stopnia. Przyréwnujac wspétczynniki przy z* po lewej

i prawej stronie, a nastepnie wspélczynniki przy z3,
dostajemy réwnosci v? = ¢, 2uv = 0; czyli (pamietajac, ze
v>0,¢>0): v=c, u=0. Wstawiamy te wartosci do (2)
i po redukcji dostajemy réwnanie

(3) —2cwzo(z® — yo) + w2z = (x — x0)® + 2 .

Kolejne przyréwnanie wspétczynnikéw, tym razem przy

x? oraz z', pokazuje, ze —2cwzo = 2, —2czo = 0, skad

wzo = — 3¢, o = 0. Réwnanie (3) redukuje si¢ do postaci
2 .

—c?yo + (—%c) =25, czyli yo =1 —23.

Zwazywszy, ze stozek C (zawierajacy parabole P) byt

wybrany dowolnie, wiec jego wierzcholek byl dowolnym

punktem zbioru R, widzimy, ze zbiér R jest opisany

réwnaniami

2

1
y=4-%"

Jest zatem parabola, lezaca w plaszczyznie x = 0,
izometryczng z parabola P. Jej wierzchotkiem jest punkt
w = (0, i, 0), a ogniskiem punkt f= (0,0,0) (obraz ogniska
paraboli P w tej izometrii). Pierwszy z nich pokrywa sie

z ogniskiem paraboli P, drugi z jej wierzcholkiem: w = f,
f = w. To wlasnie usytuowanie, o ktére chodzito w zadaniu.

z=0,

[Autor zadania, Janusz Fiett, zwrécil uwage na artykut
Stozkowe (w|A73), w ktérym jest opisana wlasnosé
pozwalajaca uprosci¢ rozwigzanie: sfera wpisana w stozek,
styczna do plaszczyzny przecinajacej jego powierzchnie
wzdluz paraboli, ma punkt stycznoéci z ta ptaszczyzna
bedacy ogniskiem tej paraboli. Zachecamy Czytelnikéw
do zapoznania si¢ z tym artykulem i do dopracowania
rozwiazania ta metoda.]


https://www.deltami.edu.pl/media/articles/2013/12/delta-2013-12-stozkowe.pdf

Klub 44 F Zadania z fizyki nr 810, 811

Redaguje Elzbieta ZAWISTOWSKA

810. Gladki, jednorodny sznurek o dlugosci I i masie m przerzucony jest przez
niewielki nieruchomy blok tak, ze w chwili poczatkowej pozostaje w réwnowadze,
a po lekkim przesunigciu zaczyna zeslizgiwac si¢ z bloku. Znalez¢ sile nacisku
Termin nadsylania rozwigzan: 31 111 2026 gznurka na blok w chwili, gdy jego dlugosé z jednej strony wynosi 1/3.

811. Natadowany kondensator ptaski znajduje sie¢ w jednorodnym polu
magnetycznym, ktérego linie sa prostopadle do plaszczyzn okladek. Odleglosé
miedzy okladkami wynosi d, indukcja pola magnetycznego B. Wewnatrz
kondensatora, kolo ujemnie natadowanej oktadki znajduje si¢ zrédto powolnych
elektronéow wysylanych w réznych kierunkach. Jakie musi by¢ napiecie miedzy
okladkami, aby elektrony ogniskowaly sie¢ z mozliwie najlepsza doktadnoscia
na dodatnio natadowanej oktadce? Oddzialywanie miedzy elektronami
zaniedbujemy.

Rozwigzania zadan z numeru 9/2025

Przypominamy tres¢ zadan:
W treéci zadania 803 w wydrukowanej
wersji numeru wrzesniowego pojawil sie
oczywisty btad — tadunek kuli
nienaladowanej nie moégt zmaleé
dwukrotnie, bo wynosil zero.

802. Podrézny stal obok poczatku wagonu z numerem porzadkowym k. Pociag ruszyt z miejsca,

po czym okazalo si¢, ze wagon o numerze m mijal pasazera przez t sekund. Ile czasu przejezdzal
obok tego pasazera wagon o numerze n? Pocigg poruszal si¢ ruchem jednostajnie przyspieszonym,
dlugosci wagonow sa jednakowe, odleglosci miedzy wagonami zaniedbywalne. Podrézny nie poruszal
si¢ wzgledem peronu.

Q1=Q—q2 q2

L 803. Dwie metalowe kule o promieniach R znajduja si¢ w bardzo duzej odlegtosci od siebie
i potaczone sg cienkim przewodnikiem, w ktérego rozcigcie wlaczona jest cewka o wspdélczynniku
I samoindukcji L. W chwili poczatkowej jedna z tych kul naladowana jest ladunkiem @, druga

nienatadowana. Po jakim czasie ladunek kuli naladowanej zmaleje dwukrotnie?

802. Oznaczmy przez At; czas, w ktorym i-ty wagon 803. Oznaczmy przez g2 tadunek, ktéry przeszedt do chwili ¢
przejezdza obok podréznego (i > k). Wtedy na kule nienaladowana (rys.), tadunek na pierwszej kuli

a2 9l wynosi w tym momencie g1 = @ — g2, a napiecie na cewce
(1) l=—% = Atp=4/=, Q—gq Q-2

2 a o 2 g2 q2
U=01=02= 10 R  dmeoR  4neoR
gdzie a jest przyspieszeniem pociagu, | dtugosciag wagonu. T€o €O €O
Zgodnie z treicia zadania Natezenie pradu w cewce [ = dditl = —%52 zmienia sie¢ zgodnie
(2) Aty =t. Z Wzorem
2
Oznaczmy przez t; czas, w ktérym przejechaly obok U= _Lﬂ = Q —2¢2 _ Ld %2 )
podréznego wagony, zaczynajac od numeru k, a konczac dt dmeo R dt
na numerze ¢. Zachodzy zwigzki: Wprowadzajac nowa zmienng g = % — @2, otrzymujemy:
(3) Ati =t; —ti—1. d2q q
W czasie t; obok podréznego przejechalo i — k 4+ 1 wagonéw, dt2 " 2meoRL =0.
zatem J . . . .
) _ est to réwnanie oscylatora harmonicznego z warunkami
@  G41-ki=E o g ROHIZR) poczatkowymi o
a
0)==, I(0)=0

stad zgodnie z 9(0) 2’ 0)

ti=AtpVi+1—Fk, tio1=AtsVi—k. Czgstosdé drgan wynosi w = 4/ m, okres drgan
U ledniaj 2) i (3):
wzglednajac () 1 T = 27m\/21eoRL. Ladunek na pierwszej sferze g1 = § + ¢

Aty = Aty (\/m +1—-k—vVm-— k) rézni si¢ od q tylko stala, czyli drga z takim samym okresem.
t Zmaleje wiec dwukrotnie po czasie
= At = .
vm+1—k—vVm—k T =
. T=—=-V2meoRL.

Szukany czas wynosi: 4 2

Vntl—k—+vn—k Po tym czasie tadunki na obu sferach wyréwnaja si¢ do

Aty = t\/m 1l —Fk—vVm—F wartosci %, a napiecie miedzy sferami spadnie do zera.

Kazdy moze nadsylaé¢ rozwigzania zadan z numeru n w terminie wspoélezynnik trudnosci danego zadania: WT = 4 — 3S/N, przy czym
do konca miesiaca n + 2. Szkice rozwiazan zamieszczamy S oznacza sume ocen za rozwigzania tego zadania, a N — liczbe
w numerze n + 4. Mozna nadsylaé¢ rozwigzania czterech, trzech, 0s6b, ktére nadestaly rozwigzanie choéby jednego zadania
dwoéch lub jednego zadania (kazde na oddzielnej kartce), mozna to z danego numeru w danej konkurencji (M lub F) — i tyle punktéw
robié¢ co miesigc lub z dowolnymi przerwami. Rozwigzania zadan otrzymuje nadsylajacy. Po zgromadzeniu 44 punktéw, w dowolnym
z matematyki i z fizyki nalezy przesyla¢ w oddzielnych kopertach, czasie 1 w ktérejkolwiek z dwéch konkurencji (M lub F), zostaje
umieszczajac na kopercie dopisek: Klub 44 M lub Klub 44 F. on cztonkiem Klubu 44, a nadwyzka punktéw jest zaliczana
Mozna je przesylaé réwniez poczta elektroniczng pod adresem do ponownego udziatu. Trzykrotne czltonkostwo — to tytul Weterana.
delta@mimuw.edu.pl (preferujemy pliki pdf). Oceniamy zadania Szczegbdlowy regulamin zostal wydrukowany w numerze 2/2002 oraz
w skali od 0 do 1 z dokladnoscig do 0,1. Oceng mnozymy przez znajduje si¢ na stronie deltami.edu.pl.
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Prosto z nieba: Co byto pierwsze: galaktyka czy czarna dziura?

O problemie jajka i kury mozna
przeczytaé¢ réwniez w A§4

Juz starozytni filozofowie glowili sie nad pytaniem: co bylo pierwsze, jajko czy
kura? Astronomowie od jakiegos$ czasu poszukujg rozwigzania podobnej zagadki.
Zastapmy tylko kure galaktyka, a jajko supermasywna czarna dziura. Pytanie

brzmi: czy jako pierwsza powstaje galaktyka gwiazd, a dopiero potem jedna
z tych gwiazd wybucha jako supernowa, pozostawiajac po sobie czarna dziure
w centrum? Czy moze to galaktyki gwiazd powstaja ,,wokdl” istniejacej juz
wczesniej supermasywnej czarnej dziury?

Zacznijmy od tego, co wiemy. We wspdlczesnym Wszechéwiecie prawie

Supermasywna czarna dziura w centrum
Drogi Mlecznej ma mase¢ 4 miliony razy
wigkszg od Stoiica — jest wigc stosunkowo
niewielka w poréwnaniu

z supermasywnymi czarnymi dziurami
wystepujacymi w niektérych innych
galaktykach. Na przyktad czarna dziura
w centrum galaktyki Holmberg 15A ma
mase¢ co najmniej 40 miliardéw mas
Storica.

Aby to sprawdzi¢, musimy zajrze¢ w przesztosé
Wszechdwiata do momentu, gdy tworzyly sie pierwsze
galaktyki. Na szczeécie mozemy to robi¢ za pomoca
teleskopow, poniewaz Swiatto podrézuje przez
rozszerzajacy sie Wszech$wiat ze skonczona predkoscia.
Gdy wiec obserwujemy odlegle galaktyki, to widzimy
je takimi, jakie byly miliardy lat temu. Absolutnym
rekordzista w obserwacjach odleglych galaktyk jest
oczywiscie Kosmiczny Teleskop Jamesa Webba, ktérego
obserwacje i tym razem wykorzystano.

Grupa badawcza pod kierunkiem Sophii Geris z Kavli
Institute for Cosmology, University of Cambridge,
opublikowala w listopadzie 2025 roku wyniki obserwacji,
ktore wykazuja, ze nawet najmniejsze czarne dziury,
jakie jesteSmy w stanie obserwowac, znajdujace sie

w centrach najodleglejszych galaktyk sa wciaz... zbyt
masywne w stosunku do masy galaktyk, w ktérych sie
znajduja (patrz wykres).
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Masa czarnej dziury log(Mau) [Mo]

4
7.5 8,0 85 9,0 9,5 100 105 11,0 115 120
Masa gwiazdowa galaktyki log(M:) [Ms]

‘Wykres zaleznosci masy supermasywnej czarnej dziury od masy
galaktyki. Rézne symbole przedstawiaja pomiary w réznych
momentach istnienia Wszechd§wiata. W szczegdlnodci tréjkaty
przedstawiaja pomiary we wspélczesnym Wszech$wiecie, a kwadraty
w odleglym (czyli mlodym) Wszech§wiecie. Punkty zaznaczone
elipsg pokazujg najnowsze pomiary mas czarnych dziur odlegtego
Wszech$wiata. Sg one zdecydowanie wigksze niz przewidywania
modelu zaznaczone z6lta linia. Zrédto: Sophia Geris et al. (2025)

Wyjaénien tego stanu rzeczy moze by¢ oczywiscie kilka.
Pierwsze wytlumaczenie zwiazane jest z niepewnos$ciami
pomiarowymi. Mozliwe jest, ze obserwujemy tylko

szczegblnie jasne obiekty (bo tylko ich $wiatlo jeste$my
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kazda duza galaktyka, w tym nasza Droga Mleczna, ma w swoim centrum
supermasywna czarng dziure o masie od setek tysiecy do kilku miliardéw

razy wiekszej od masy Stonca. Wiemy tez, ze masy tych czarnych dziur sa
zwiazane z masa galaktyki, w ktorej sie znajduja. Im wieksza i masywniejsza jest
galaktyka, tym masywniejsza jest supermasywna czarna dziura w jej centrum.
Naukowcy interpretujg to jako dowdd na to, ze obecnie oba te obiekty ewoluuja
razem. Ale czy tak bylo zawsze?

w stanie zarejestrowac). Drugie wytlumaczenie jest
zdecydowanie bardziej ekscytujace — czarne dziury
we wezesnym Wszechswiecie maja tak duze masy

w stosunku do mas ich galaktyk, poniewaz powstaty
jako pierwsze!

Czyzbyémy zatem znalezli odpowiedz? Otéz nie do
konica, pojawia sie kolejne pytanie: jak te ogromne,
supermasywne czarne dziury powstaly w tak

krotkim czasie? Jak dotad jedynym potwierdzonym
obserwacyjnie procesem, podczas ktérego powstaja
czarne dziury, jest wybuch supernowej. Kiedy gwiazda
o masie ponad 20 razy wiekszej od Stonca wyczerpie
swoje paliwo, jej jadro zapada sie, tworzac czarna
dziure. Tak powstale czarne dziury sa jednak malutkie
w poréwnaniu do supermasywnych czarnych dziur

(te pierwsze maja masy kilku mas Slonca, a te drugie
nawet miliardy mas Slofica). Wiemy, ze czarne dziury
moga ,,rosnac¢” i przybiera¢ na masie, pochtaniajac
otaczajaca je materi¢ lub laczac si¢ z innymi pobliskimi
czarnymi dziurami. Jednak proces wzrostu trwa
miliardy lat i maksymalne tempo, w jakim czarna
dziura moze przybiera¢ na wadze, jest fizycznie
ograniczone. Nie mamy wiec na razie wytlumaczenia
na istnienie supermasywnych czarnych dziur we
wezesnym Wszechswiecie. Jest oczywiscie kilka hipotez.
Jedna z nich zaklada, ze czarne dziury we wczesnym
Wszechéwiecie mogly powstaé¢ bezposérednio w wyniku
zapadnigcia sie masywnych chmur gazu, bez udziatu
gwiazd. W tym momencie trwaja poszukiwania
dowoddéw obserwacyjnych.

Co wiec bylo pierwsze? Galaktyka czy supermasywna
czarna dziura? Prawdopodobnie czarna dziura. Ale nie
wiemy na pewno. Dam zna¢, gdy co$ si¢ zmieni.
Napisane na podstawie publikacji: Sophia Geris et al. (2025)
“JADES reveals a large population of low mass black holes at high

redshift”, Monthly Notices of the Royal Astronomical Society,
https://doi.org/10.1093/mnras/staf1979.

Anna DURKALEC

Zaklad Astrofizyki, Departament Badan Podstawowych,
Narodowe Centrum Badan Jadrowych


https://www.deltami.edu.pl/2024/04/jajko-czy-kura-historia-pewnej-zagadki.pdf
https://doi.org/10.1093/mnras/staf1979

/Niebo w styczniu

Styczen zastanie Stonice w gwiazdozbiorze Strzelca. Powoli zwigksza ono
wysokosé gérowania nad horyzontem. Dopiero jednak od trzeciej dekady
miesigca wedrowka Stonca na pdéinoc przyspieszy, gdy przetnie réwnoleznik
—20° deklinacji. Niewiele wczesniej Stonice wejdzie do gwiazdozbioru Koziorozca,
gdzie pozostanie do potowy lutego.

Poczatek miesiaca rozswietli blask Ksiezyca, gdyz Srebrny Glob 3 stycznia
przejdzie przez pelnie. Niestety oznacza to, ze promieniujace w tym samym
czasie Kwadrantydy sg niewidoczne. W Nowy Rok Ksiezyc w fazie 96% spotka
si¢ z El Nath, druga co do jasnosci gwiazda Byka, podczas pelni natomiast
przejdzie w polowie drogi miedzy Polluksem, najjasniejsza gwiazda BliZniat,

a Jowiszem. Okolice Ksiezyca w pelni wraz z nim sa w opozycji do Stonca.
Faktyczna opozycja najwiekszej planety Ukladu Stonecznego przypada tydzien
po tym spotkaniu. W tym roku jest to $rednia opozycja tej planety. Jowisz
pojasnieje do —2,7™, a jego tarcza uro$nie do 47”. Planeta porusza sie¢ ruchem
wstecznym i 19 stycznia przejdzie mniej niz 0,5° od $wiecacej z jasnoscig 3,5™

gwiazdy Wasat (0 Gem).

Poczatek stycznia tego roku to szczegdlny moment
réwniez dlatego, ze 6 dnia miesiaca Wenus przechodzi
przez koniunkcje gérna ze Storicem, a 9 to samo czyni
Mars. A zatem przy pelni Ksiezyca Mars, Wenus,
Stonce, Ziemia, Ksiezyc i Jowisz ustawia si¢ w kosmosie
prawie na jednej linii. Niedaleko niej znajdzie si¢ takze
Merkury, ale ten koniunkcje gérna ze Stoncem osiagnie
21 stycznia. Kolejne dwa dni p6zniej w koniunkcji ze
Storicem znajdzie sie planeta kartowata Pluton.

Ksiezyc natomiast po spotkaniu z Jowiszem powedruje
dalej i 6 stycznia wieczorem wzejdzie 2° od Regulusa,
najjadniejszej gwiazdy Lwa, zmniejszajac przy tym
faze do 85%. Po poludniu 10 stycznia przypada
ostatnia kwadra Srebrnego Globu, ktory pokaze sie
nad widnokregiem juz kolejnej doby w towarzystwie
$wiecacej 2,5° nad nim Spiki, najjasniejszej gwiazdy

w Pannie.

Na porannym niebie naturalny satelita Ziemi pozostanie
do potowy miesiaca, znikajac w brzasku Storica juz
trzy dni przed przypadajacym 18 stycznia nowiem.
Wynika to z tego, ze Srebrny Glob przebywa wtedy pod
ekliptyka, ktorej nachylenie do porannego widnokregu
od poczatku roku sie pogarsza. W tym czasie warto
wspomnieé o jego spotkaniu z Antaresem w dniach

14 i 15 stycznia, gdy jego bardzo cienki sierp w fazie
najpierw 19%, a nastepnie 12% zblizy sie za kazdym
razem na okolo 6° do najjasniejszej gwiazdy Skorpiona.

W trzeciej dekadzie stycznia ekliptyka tworzy duzy kat
z widnokregiem o zmierzchu, stad po nowiu Ksiezyc
rozgo$ci sie na wieczornym niebie. 23 stycznia jego faza
uros$nie do 23%, a jego tarcza pokaze sie 5° nad para
planet Saturn—Neptun. W styczniu obie planety kieruja
sie juz na pdélnocny wschéd i do konca miesiaca dystans
miedzy nimi spadnie do ponizej 2°. Jasno$¢ Saturna
zmniejszy sie do +1,1™, przy $rednicy tarczy 17”. Blask
Neptuna wynosi +7,9™. 19 stycznia rano naszego czasu
Saturn przejdzie mniej niz 1’ od gwiazdy 24 Psc. Do
zapadniecia ciemnoéci dystans miedzy tymi ciatami
niebieskimi uro$nie do 100’. 9 stycznia od godziny 17:45
i 25 stycznia od 17:30 posiadacze wigkszych teleskopow
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z powiekszeniem ponad 100 razy moga pokusic¢ sie
o dostrzezenie Tytana na tarczy Saturna.

Dobe p6zniej Srebrny Glob zwickszy faze do 33%.
Tego wieczora zakryje on gwiazde 4. wielkosci § Psc.
Moze ktos pamieta, ze w latach 2015-2017 niedaleko
tej gwiazdy i sasiadujacej z nia $wiecacej z podobna
don jasnoécia € Psc swoje petle na niebie kreslita
planeta Uran. Polska znajdzie sie na potudniowej
granicy zjawiska i na potudnie od linii mniej wiecej
Biata Podlaska—Bielsko-Biata do zakrycia nie dojdzie.
Dodatkowo zjawisko zacznie si¢ przy zachodzacym
Stonicu, a w poludniowo-zachodniej czesci Polski nawet
tuz przed jego zachodem. A zatem widoczne jest tylko
odkrycie § Psc, ktore nastapi okoto godziny 15:50,

w zaleznosci od polozenia obserwatora. W zachodniej
Polsce — troche wczesniej, we wschodniej — troche
pézniej. Pechowo, lepiej bedzie widoczne odkrycie, do
ktorego dojdzie przy jasnym brzegu ksiezycowej tarczy,
co jest trudniejsze do obserwowania.

26 stycznia Ksiezyc przejdzie przez I kwadre, a dobe
pézniej wejdzie do gwiazdozbioru Byka i zakryje
Plejady. Tym razem zjawisko jest dobrze widoczne

w naszym kraju przed péinoca, ale na polskim

niebie Srebrny Glob zakryje tylko cztery jasne
gwiazdy z pétnocno-zachodniego kranca gromady:

18, 19 (Taygeta), 20 (Maia) i 21 (Sterope) Tauri. Przy
czym Maia zniknie za ksiezycowa tarcza na polnocny
wschéd od linii mniej wigcej Dartowo-Hajnowka. Gdzie$
na tej trasie mozna polowaé na szczegdlnie atrakcyjne
zakrycie brzegowe tej gwiazdy, gdy wielokrotnie
pojawia sie ona i gasnie w miare przechodzenia miedzy
zaglebieniami i wybrzuszeniami profilu ksiezycowej
tarczy. Zakrycie Plejad potrwa od okolo godziny 22:20
do 23:45.

W ostatnich dniach stycznia Srebrny Glob stopniowo
zwiekszy faze prawie do pelni, spotykajac sie najpierw
ponownie z El Nath, 29 dnia miesiaca, a nastepnie

z Jowiszem i Polluksem 30 i 31 stycznia.

Ariel MAJCHER



Rozwigzania zadan ze strony 5

& Rozwigzanie zadania M 1840.
Oznaczmy przez a, b i ¢ pierwiastki wielomianu. Wtedy
234+ pr? 4 qr+r=(x—a)(z—0b)(z—c).

Wstawiajac ¢ = 1, mamy

1+p+g+r=>1—-a)(1-0b)(1—c).
Kazda z liczb a, b i ¢ lezy w przedziale (0, 2), zatem kazda z liczb
1—a, 1—b, 1—c lezy $ciSle pomiedzy w przedziale (—1,1). Wynika
stad, ze iloczyn (1 — a)(1 — b)(1 — ¢) réwniez lezy w przedziale
(—=1,1). Zatem

p+g+r=>1—-a)(l-01—-¢c)—1
lezy w przedziale (—2,0).

& Rozwigzanie zadania M 1841.

Zauwazmy, ze dla dowolnej liczby catkowitej k > 1 mamy

nwd(n,n + k) < k, gdyz jesli liczba pierwsza p dzieli n i n + k,

to dzieli réwniez ich réznice k. Wobec tego skoro nwd(n,n+1) =1

i nwd(n,n + k) roénie dla k = 1,2,...,35, to nwd(n,n + k) = k dla

k=1,2,...,35. W szczegdlnosci oznacza to, ze wszystkie liczby

1,2,...,35 dziela n, wiec 36 = 4 - 9 réwniez dzieli n, a zatem
nwd(n,n + 36) = 36 > 35 = nwd(n,n + 35).

i Rozwigzanie zadania M 1842.
Zwycieska strategie ma gracz drugi.

Pierwszego gracza oznaczmy przez A, drugiego przez B. Opiszemy
teraz strategie wygrywajaca dla B. Przypu$émy, ze A zjada
kostke wymiaru k, pozostawiajac trapez o bokach k, p — k, p,

p — k. Niech a = max(k,p — k), b = min(k, p — k). Poniewaz
nwd(a,b) = nwd(k,p — k) = 1, wiec a # b. Gracz B zjada zatem
trojkat o boku p — k, pozostawiajac rownolegtobok o wymiarach a
na b. Teraz rozpatrzmy dwa przypadki:

e Zalézmy, ze A zjada kawalek o wymiarach mniejszych niz b,
wtedy B zjada kawalek symetryczny wzgledem $rodka
réwnolegloboku i wygrywa, gdyz A w tym momencie nie ma
ruchu.

o Jesli zag A zjada tréjkat o boku b, pozostawia trapez o bokach
a—b, b, a, b, gdzie znowu nwd(a — b,b) = nwd(a,b) = 1.
Gracz B, kontynuujac swoja strategie, doprowadzi do sytuacji,
w ktérej a = b =1 (gdyz nwd(a,b) = 1), co oznacza, ze po
ruchu A pozostaje ostatnia kostka, stad B wygrywa.

/\

Pytanie: Ktory z graczy ma wygrywajaca strategie, jesli bok
czekolady jest liczbg ztozona?

/\

a b

& Rozwigzanie zadania F 1135.

Rozwazamy czastke wyrzucona pionowo w gére z powierzchni
Ziemi z predkoscia ucieczki. Pomijamy opér powietrza. Zasada
zachowania energii daje:

1 M 2GM
E:—mv27G m_y = v(r)z“ ¢ .
2 r T
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Podstawiamy GM = gR?, gdzie g to przyspieszenie ziemskie na
powierzchni, a R to promien Ziemi:

v(r) =1/ 29:%2.

Aby obliczyé czas, jaki zajmuje czastce osiagniecie wysokosci
h, zauwazamy, ze predkos¢ nie jest stala — zmienia si¢ wraz

z odlegloscia od srodka Ziemi. Nie mozemy wiec uzy¢ prostego
wzoru t = %, poniewaz nie ma jednej predkosci dla catej drogi.

Zamiast tego dzielimy ruch na nieskonczenie male odcinki drogi

dr, w ktérych predkos$é v(r) mozna uznaé za prawie staly. Dla

kazdego takiego odcinka czas przebycia wynosi wtasnie dt = U‘Z:) .

Sumujac te mate czasy dla wszystkich odcinkéw od » = R do
r = R + h, otrzymujemy catkowity czas ruchu jako wtlasnie catke:

R+h R+h R+h

dr dr 1
t = / _— = \/;dT

v(r) / [2gR2  \/2gR2 /

R R g’r g R

R+h
- [275/2} -2 ((R+h)3/2—R3/2)
/29 R2 3

R 34/2gR2

Zauwazmy, ze (R + h)3/2 = R3/2 (1 + %)3/2, wiec:
3/2
(e8]
3 g R

i Rozwigzanie zadania F 1136.

Przeanalizujmy sytuacje wyplywu wody z kranu (zobacz

rysunek na s. 5). Na skutek dzialania sily grawitacji strumien
wody przyspiesza w miare oddalania si¢ od wylotu. Zgodnie

z zasadg ciaglosci (jedna z postaci prawa zachowania masy)
objetos$é¢ przeplywajacej cieczy na jednostke czasu pozostaje stala.
Przyktadowo dla dwéch przekrojéw poprzecznych, oznaczonych
jako 1-1 oraz 2-2, mozemy zapisac:

(%) Q =v1A1 =v2Aa,

gdzie vy i v2 to $rednie predkosci przeptywu cieczy w przekrojach
o polach powierzchni, odpowiednio, A; oraz As.

Choé dzisiaj réwnanie wydaje sie oczywiste, zostalo ono
sformutowane dopiero w XVII wieku.

Dla cieczy idealnej (czyli takiej, w ktérej mozna pominaé straty
energii) réwnanie Bernoulliego zastosowane do przepltywu miedzy
punktami 1-1 i 2-2 przyjmuje postac:
2 2

v_1+p_1+Zl:’U_2+p_2+22‘

29 owg 29 owg
Zakladajac, ze ci$nienia w obu punktach sa réwne (p1 = p2 = pa)
oraz ze réznica wysokosci z1 — zg = AL, powyzsze réwnanie
upraszcza si¢ do postaci:

ikl SN
29

Uwzgledniajac zwigzek migdzy predkoscig a przeplywem:
Q = vA = vrd? /4, ostateczny wzér na strumien objetosciowy

przyjmuje postac:
7rd§ \/2g9AL
4y/(di/da)d — 1

Zatem aby wyznaczy¢ natezenie przeplywu, wystarczy zmierzy¢
trzy wielkosci geometryczne: $rednice strumienia w dwéch
przekrojach oraz odlegto$¢ miedzy tymi przekrojami. Po
podstawieniu danych liczbowych otrzymujemy natezenie
3,4-107%m3/s.



A c1 R C2 B
Twierdzenie Cevy

Dowdd («<). Zaktadamy, ze s = 1. Przypu$émy, ze mimo tego
odcinki AP, BQ, CR nie przecinaja si¢ w jednym punkcie. Niech
AP i BQ przecinaja sie w punkcie K. Niech prosta C'K przecina
odcinek AB w punkcie R’ # R. Z udowodnionej juz implikacji (=)

by | JAR'| _
[R'B| —

a1

ag b

mamy réwnosé

Jednak to jest niemozliwe, poniewaz punkty R i R’ sg rézne.

Odcinki lub proste AP, BQ i CR nazywa si¢ krétko czewianams.
Twierdzenie Cevy mozna réwniez wyrazié¢ za pomocy katéw. Jest to
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Twierdzenie Cevy — podstawy
Barttomiej BZDEGA

Wsrédd olimpijczykéw oraz pasjonatéw geometrii szeroko znane jest

Uniwersytet im. A. Mickiewicza w Poznaniu

Twierdzenie Cevy. W trdjkgcie ABC na bokach, odpowiednio, BC, CA, AB lezq
punkty P, Q, R. Przyjmijmy oznaczenia jak na rysunku obok i niech

b1
az b2 C2 '
Wéwczas odcinki AP, BQ, CR majg punkt wspélny wtedy i tylko wtedy, gdy s = 1.

al C1

Teza twierdzenia jest prawdziwa réwniez, gdy jeden z punktéw P, @, R nalezy do boku
tréjkata, a pozostate dwa leza na przedtuzeniach odpowiednich bokéw. Tutaj ogranicze
sie jednak do przypadku wymienionego w twierdzeniu.

Dowdd (=). Zaltézmy najpierw, ze odcinki AP, BQ, CR maja punkt wspdlny K.

Oznaczmy pola [BKC], [CK A, [AK B] przez, odpowiednio, Pa, Pg, Pc. Jest jasne
[ABP] _ a; _ [KBP]
[ACP] — a2 ~ [KCP]"

. Mnozac te rownoéé z dwiema analogicznymi, otrzymamy

(wspdlne wysokosci), ze Stosunki pdl sa réwne, wiec takze
a; _ |ABP]—[KBP] _ P
as — [ACP|-|KCP] — Pp
teze.

Trygonometryczne twierdzenie Cevy.
W tréjkgcie ABC' lezq punkty P, Q, R na bokach,
odpowiednio, BC, CA, AB. Przyjmijmy oznaczenia

jak na rysunku i niech
[AR'| _

z ktérej wynika, ze B = o

o sin o sinyq

sin 51
sin ﬂz
Wowczas odcinki AP, BQ, CR majg punkt wspdlny

wtedy 1 tylko wtedy, gdy t = 1.

sin ap sinys

Dowdd. Uzgodnijmy, ze a = |BC|, b = |CA| i ¢ = |AB|. Wystarczy udowodnié, ze
a1 _ [ABP] _ %c|AP|sina1

az [ACP] — %b|AP|sina2
réwnosé przez dwie analogiczne, otrzymamy s = t.

__ csinag
T bsinag

s = t. Zauwazmy najpierw, ze . Mnozac stronami te

7 tego twierdzenia mozna réwniez korzystaé¢ dla samych trzech cieciw danego okregu
— wystarczg tylko miary odpowiednich katéw, dlugosci bokéw sg niepotrzebne. Sama
rownoéé

a csin o

as bsin aio

ma swojg wartos¢ — mozna ja uzywaé¢ w twierdzeniu Cevy, zamieniajac, wedle uznania,
proporcje podziatéw bokéw na ich trygonometryczna wersje.

Zadania

1. Wykaz, ze nastepujace czewiany w trojkacie ostrokatnym przecinaja sie w jednym
punkcie: §rodkowe (w $rodku cigzkosci), dwusieczne (w $rodku okregu wpisanego),
wysokosci (w ortocentrum).

2. Wykazaé, ze odcinki taczace punkty stycznosci okregu wpisanego w trojkat
z przeciwleglymi wierzchotkami przecinaja sie w jednym punkcie (punkt
Gergonne’a).

3. Udowodnié¢ za pomoca twierdzenia Cevy, ze w trapezie, niebedacym
réwnolegtobokiem, nastepujace punkty lezg na jednej prostej: srodki podstaw, punkt
przeciecia sie przekatnych oraz punkt przeciecia sie prostych zawierajacych ramiona
trapezu.

4. Czescia wspélng kwadratéw ABCD i APQR jest odcinek AR. Wykazaé, ze proste
BP, CQ i DR przecinaja sie¢ w jednym punkcie.

5. Dany jest tréjkat ostrokatny ABC. Punkt D jest spodkiem wysoko$ci opuszczonej
na bok C'B, natomiast K jest dowolnym punktem wewnetrznym tej wysokosci.
Proste BK i CK przecinaja odcinki AC i BC' w punktach, odpowiednio, E i F.
Udowodnié, ze prosta AD jest dwusieczng kata FDE. (Kanadyjska OM, 1994)

6. Odcinki AD, BE i C'F sa wysokosciami tréjkata ostrokatnego ABC' i przecinaja sig¢
w punkcie H. Punkty K, L, M leza, odpowiednio, na odcinkach BC, C A, AB oraz

HK1FEF, HLL1FD, HM1DE.

Udowodnié, ze odcinki AK, BL i CM przecinaja sie¢ w jednym punkcie.
(XIV WLM)
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»Delta" poleca
Biografia geniusza, ktorego odkrycia zmienity oblicze nauki.

Polecamy ksiazke autorstwa Patchena Barssa

"Sir Roger Penrose. Geniusz i jego droga do rzeczywistosci"”
Na podstawie odbywajacych sie w ciggu 5 lat niemal
cotygodniowych wideokonferencji i rozmow telefonicznych
oraz wywiadow przeprowadzonych w Anglii, Kanadzie

i Stanach Zjednoczonych Patchen Barss stworzyt
fascynujacy obraz Noblisty. Co ciekawe, autor przyznaje,

ze choc Scisle wspotpracowat z Rogerem Penrose'em, to nie
zatwierdzat on maszynopisu ani nie miat wptywu na wybor
0s0b, z ktorymi przeprowadzone byty wywiady.

Nie jest to z pewnoscia obraz ,,przefiltrowany”,
wyidealizowany.

Goraco polecamy lekture tej biografii.
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