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Pola i punkty kratowe

*Instytut Matematyki Stosowanej
i Mechaniki UW

Rys. 1. Okrag C(4) i okregi C(4 £ @)
pomagajace oszacowal liczbg punktow

kratowych
r=+/n N(n) N(n)/n
1 5 5
2 13 3,25
3 29 3,22
4 49 3,06
5 81 3,24
6 113 3,14
7 149 3,04
8 197 3,08
9 253 3,12
10 317 3,17
20 1257 3,14
30 2821 3,13
100 31417 3,1417
200 125629 3,1407
300 282697 3,1411
Rys. 2
r=+n N(n) Nn)/nxmr
400 502625 3,14141
500 785 349 3,14139
1000 3141 549 3,141549
10000 314159221 3,141592
100 000 31415939 281 3,141594
200 000 125663 759077 3,141594
Rys. 4

Grzeqorz LUKASZEWICZ*

W artykule Obliczenia pdl i objetosci — trzy metody geometryczne, Ass) opisaliémy
trzy geometryczne sposoby obliczania pél figur ptaskich. Celem tego artykutu jest
pokazanie, jak mozna aproksymowaé pole kota o promieniu r = /n, gdzie n jest
liczba naturalna, za pomoca zliczania punktow kratowych zawartych w tym kole
i na jego brzegu. Pokazemy takze, ze w przypadku wielokatow o wierzchotkach
w punktach kratowych znajomos¢ liczby punktéw kratowych w ich wnetrzach

i na ich brzegach wystarcza do dokladnego obliczenia pél tych wielokatéw.

Obliczenia dla okregu. Oznaczmy przez N (n) liczbe punktéw kratowych
na i wewnatrz okregu C(y/n) o érodku w poczatku ukladu wspélrzednych
i promieniu r = \/n (patrz rys. 1).

Jednym z pierwszych uczonych, ktérzy postawili pytanie o warto$é N(n), byl
Carl Friedrich Gauss. W roku 1837 napisal na ten temat artykut. Podal w nim
swoje obliczenia dla naturalnych r w zakresie od 1 do 300, patrz tabela na
rysunku 2. Z tabeli mozemy wywnioskowaé, ze wartosci % daza do liczby ,
gdy n ros$nie nieograniczenie. Aby to pokazaé, oszacujemy najpierw réznice
|N(n) — mn|. Skoro N(n) jest réwne sumie pél kwadratéw, ktérych srodki leza na
i wewnatrz okregu C'(y/n), to jest jasne (patrz rys. 1), ze
2 2
r(vi-2) <ne<n (Vi)

2
skad wynika, ze

0 2ol (24 ).

Prawa strona ostatniej nieréwnosci dazy do zera wraz z nieograniczonym
wzrostem n. Powyzsza nierownos¢ mozemy odczytaé jako

N(n) —7mn \/? 1
— | S\ -+
n  2n

™
co oznacza, ze warto$¢ wzgledna (w stosunku do pola kola o promieniu /n)
réznicy pomiedzy liczba punktéw kratowych w tym kole, razem z jego brzegiem,
a polem tego kota dazy do zera wraz ze wzrostem promienia tego kota. Wartoséé
wzgledna tej réznicy jest rzedu ﬁ, czyli odwrotnosci promienia kota.

Na podstawie tabeli z rysunku 2 mozna obliczy¢ te réznice z duza doktadnoscia,

. . . . e . . 292
biorac np. za liczbe 7 jej przyblizenie Archimedesowe =

3,136

3,134 ’

3,132

100 150 200 250 300

Rys. 3. Ilustracja zbieznosci N(n?)/n? — «

Wykres na rysunku 3 pokazuje, w jaki sposéb fo;z) zbliza sie do liczby m wraz

ze wzrostem r w zakresie 0 < r < 300. Tabela na rysunku 4 pokazuje wyliczenia
dla wigkszych wartosci .

Nasuwaja sie dwa pytania.

(i) Czy istniejg wzory okreslajgce N(n) w zaleznodci od n?

(ii) Czy moze istniejq figury plaskie, dla ktdrych liczba punktéw kratowych
lezgcych w ich wnetrzu © na ich brzegu wyraza nie tylko w przyblizeniu, ale —
poprzez konkretng formule — doktadnie pola tych figur?
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Podtloga |z ] liczby = to najwigksza liczba

catkowita nie wieksza od z. formula Gaussa:

Przyktadowe wartosci N(n):

N(O) =1 (2)
N1)=1+44=5

N2 =1+4-2=9
NB)=1+4-3-4=9

4)

Na oba te pytania odpowiedZ jest pozytywna. Odpowiedzia na pytanie (i) jest

o= ta(un - 5+ 3]~ 2]+ 3]~ L] )

gdzie |-] jest funkcja podlogi. Latwo stad wyznaczy¢ bezposrednio wartosci dla
n=0,1,2,3,4 (na marginesie). Z réwnosci N(2) = N(3) mozemy wywnioskowad,
ze na okregu C(1/3) nie ma zadnych punktéw kratowych, a z tego, ze

N(4) — N(3) = 4, wynika, ze na okregu C(v/4) jest ich 4.

Zanim przejdziemy do dowodu wzoru Gaussa, wykazemy jedna z jego
konsekwencji, stynny wzoér Leibniza:

(3)

Zalézmy, ze \/n jest liczba naturalna nieparzysta.
Napiszmy wzér Gaussa ([2)) w postaci:

i(N(n)A) = |n|— gJ + EJ - {%J b H%J N
gdzie 6 jest ulamkiem wlaéciwym. Korzystamy tu

7 tego, ze szereg jest naprzemienny, a moduly jego
wyrazéw tworza cigg nierosnacy. Wtedy modut

reszty szeregu jest nie wiekszy od modutu pierwszego
odrzuconego wyrazu, czyli Lﬁj Liczba ta jest

mniejsza od liczby naturalnej L%J = \/n, mozna ja
zatem zapisaé jako 0+/n, gdzie 0 jest jak wyzej.

Nastepny krok to zastapienie funkcji podtogi utamka
samym utamkiem. Poniewaz T — || <1, a liczba

zachowanych wyrazow szeregu jest réwna @ < +/n,
wiec
%(N(n)—l)zn—g—l—%—g—i—...i%iﬁ\/ﬁiﬁ'\/ﬁ,
gdzie ¢’ jest takze ulamkiem wlasciwym. Dzielac teraz
obie strony przez n, otrzymujemy

1 11 1 1 0 0’

Dla przyktadu R(3) =

Z_1_-

1 1
7+7

1
— +...

1
9 11

1
3 5 7
dla liczb n przebiegajacych ciag kwadratow liczb
nieparzystych.
Biorac pod uwage zbieznosé % — 7 wynikajaca
z oszacowania (1) i zbiegajac z n do nieskoriczonosci,
dostajemy wzor Leibniza (3)).

PrzejdZzmy teraz do dowodu formuty Gaussa. Jesli przez
R(n) oznaczymy liczbe punktéw kratowych na okregu
C(y/n), to N(n) = R(0) + R(1) + ... + R(n). Znajac
wartosci R(k) dla poszczegdlnych k, mozemy obliczyé
N(n), i taka tez byla droga odkrycia powyzszej formuly
Gaussa. Rzecz sprowadza si¢ zatem do pytania o liczbe
pierwiastkow catkowitych a, b réwnania

(4) a2+t =n
dla danej liczby naturalnej n. Mamy nastepujace:

Twierdzenie 1 (za [Hilbert, 1956]). Liczba
przedstawien liczby catkowitej n jako sumy kwadratow
dwdoch liczb calkowitych jest réwna czterokrotnosci
réznicy liczby dzielnikow liczby n o postaci 4k + 1 ¢ liczby
dzielnikow o postaci 4k + 3.

N(3) — N(2) = 0. Liczba pierwsza 3 ma jedynie

dzielniki 1 i 3, wiec na mocy powyzszego twierdzenia R(3) = 4(1 —1) = 0.
Dalej: R(4) = N(4) — N(3) = 4. Wér6d dzielnikéw liczby 4 (czyli 1,2,4)

nie ma dzielnikéw postaci 4k + 3, wiec z twierdzenia otrzymujemy

R(4) = 4(1 — 0) = 4. T rzeczywiscie, na okregu C(v/4) mamy cztery punkty
kratowe, (2,0), (0,2), (—2,0), (0, —2), bedace calkowitymi rozwiazaniami réwnania
a® +b? = 4 (patrz rys. 5).

Bezposrednie wykorzystanie Twierdzenia 1 dla obliczenia kolejnych R(n),
a nastepnie réwnosci N(n) = R(0) + R(1) + ... + R(n) dla obliczenia N(n)
bytoby niezmiernie zmudne dla duzych n. Jest jednak duzo prostszy sposéb

obliczenia N (n). Najpierw obliczamy liczbe dzielnikéw postaci 4k + 1 dla

Rys. 5. Punkty kratowe na okreggach
o promieniach y/n dlan =1,2,3,4

wszystkich liczb naturalnych m nieprzekraczajacych n i od tej liczby odejmujemy

liczbe dzielnikéw postaci 4k + 3, tez dla wszystkich m < n, otrzymujac:

Na przyktad dla n = 10 wsréd liczb
1,2,...,10 mamy trzy bedace postaci

4k +1: 1, 5, 9. Przez 1 dzielg si¢ wszystkie
z powyzszej dziesigtki, 10 = [ 2], przez 5
dziely si¢ dwie, 2 = L%OJ, przez 9 dzieli si¢
tylko jedna, 1 = [ 10 ]. Przy tym |13

i wszystkie nastepne wyrazy szeregu

[10] + [ 2] + [ 2] + [13) + ... sa réwne
Zero.

(5] +|

Mnozac powyzsze wyrazenie przez 4 i dodajac do niego jedynke odpowiadajaca
punktowi kratowemu (0, 0), po przegrupowaniu wyrazéw, otrzymujemy
formule (2). Bardziej formalne ujecie rozwazan przedstawionych w punkcie (i)
mozna znalezé w artykule Deltowym Michala Krycha [Krych, 2019].

ol il ) - (Gl F )+ L)+

Obliczenia dla wielokatéw. Przejdzmy do pytania (ii) o dokladne
wyznaczenie pola za pomocs zliczania punktéw kratowych. Jedna z mozliwych
odpowiedzi na to pytanie jest nastepujace twierdzenie z 1899 roku:

2



Twierdzenie Picka. Pole dowolnego prostego wielokgta P, ktorego

i wierzchotkami sq punkty kratowe, jest dane wzorem

(5) A=W +1iB -1,

gdzie W jest liczbg punktow kratowych wewnqgtrz P, a B jest liczbg punktow
kratowych na brzegu P, wliczajgc wierzcholksi.
Twierdzenie Picka laczy geometryczng teorie liczb z mierzeniem pdl, czyli, jak
sama nazwa wskazuje, z klasyczng geometriag. Sama jego natura jest jednakze
Rys. 6. Dolaczajac jeden wierzcholek topologiczna. Aby to zobaczy¢, rozwazymy prostsza, ale ogélniejsza sytuacje.
i dwie krawgdzie do obszaru A, Niech G bedzie figura plaska, zlozona z segmentéw tréjkatnopodobnych o tym
gtj_zgriuée.néy:; ?Zfr_%_l];’:;rﬁlg dzimy w ten  Samym polu d, tak jak to wida¢ na rysunku 6. Oznaczmy liczbe jej wierzchotkéw
sposéb do 15 =3-0+2-9 -3 dlasumy  wewnetrznych przez W, zewnetrznych przez B, liczbe krawedzi przez K, a pole

pierwszych siedmiu obszaréw. Na koniec - . 2 4 . _ _
dolaczamy jedng, krawed? zewnctrzna, figury G przez A. Przypomnijmy ponadto réwnosé Eulera: V — E+ F =1,

jeden wierzchotek zewngtrzny staje sig gdzie V., E i F to, odpowiednio, liczby wierzchotkéw, krawedzi i Scian grafu
wtedy wierzchotkiem wewnetrznym 1 snie b . h sie k dzi

i mamy 16 = 3-1+2-8 — 3 dla calej narysowanego na plaszczyznie bez przecinajacych sie krawedzi.

figury

W naszej sytuacji V=W + B, F = % i E = K. Pokazemy, ze K =3W + 2B — 3.
Rzeczywiscie wzér ten zachodzi dla pojedynczego obszaru trojkatnopodobnego,
gdyz mamy wtedy K =3, W =0, B=3i3=3-0+2-3— 3. Jesli do tego obszaru
dotaczymy podobny, przylegajacy do niego element naszej wyjsciowej figury, to
prawdziwos¢ tego wzoru sie nie zmieni, i tak bedzie az do ulozenia calej figury —
rysunek 6 ilustruje, w jaki sposob dodawac kolejne obszary. Wstawiajac teraz
posta¢ V', E i F' do réwnosci Eulera, dostaniemy

A=2dW +dB — 2d.

Dla d = % otrzymujemy stad réwnanie (5)).

Rys. 7. Pole figury po lewej stronie
obliczone ze wzoru (5) jest réwne

A =11+ %10 — 1 = 15. Po prawej stronie
jedna z triangulacji tej figury. Kazdy . . . , . . .
2 30 tréjkatéw podstawowych ma pole Dla dowodu twierdzenia Picka wystarczy pokazaé¢, po pierwsze, ze kazdy obszar

réwne 3 z zalozen tego twierdzenia mozna rozlozyé na trojkaty podstawowe, to znaczy
niezawierajace punktow kratowych w swoich wnetrzach ani na swoich bokach
(z wyjatkiem wierzcholkéw) — dowdd tej wlasnosci pomijamy, po drugie, ze pole
kazdego trojkata podstawowego jest rowne % i po trzecie, ze dla calego obszaru
zachodzi rownosé K = 3W + 2B — 3.

To, ze pole kazdego tréjkata podstawowego jest réwne %, wynika z rozumowania
uzytego dla dowodu nieréwnosci (1). Kazdy tréjkat podstawowy mozna
uzupelnié¢ do réwnolegtoboku niemajacego punktéow kratowych w swoim wnetrzu
ani na krawedziach, a wiec réwnolegloboku generujacego siatke oparta na
punktach kratowych. Zatézmy, ze pole rownolegltoboku siatki jest rowne «.
Wykorzystujac otrzymana siatke do aproksymacji pola kota, podobnie jak

powyzej, otrzymujemy: N(n) ADx
|

X \/ﬁ )
(n)

gdzie D jest érednicg réwnolegloboku siatki. Jako ze NT — T Wraz ze

wzrostem n, to a =1, a stad § = %

n

Dowdéd réwnosci K = 3W + 2B — 3 dla obszaru wielobocznego przeprowadzamy
jak powyzej, dobudowujac kolejne tréjkaty podstawowe.

Warto poréwnaé przedstawiony schemat dowodu twierdzenia Picka z dowodem
Cauchy’ego réwnania Eulera dla wieloScianéw [Lakatos, 2005, str. 28—-32],

aby zdaé sobie sprawe z czyhajacych putapek natury topologicznej w trakcie
dowodzenia metoda triangulacji. Na temat twierdzenia Picka, rozmaitych

jego dowoddéw i uogdlnien istnieje obszerna literatura. O powigzaniu tego
twierdzenia z réwnaniem Eulera przeczyta¢ mozna np. w [Detemple, 1974].
Ciekawe fizyczne intuicje zwiazane z twierdzeniem Picka przedstawil Jarostaw
Gérnicki w artykule ,,Wodny” dowdéd twierdzenia Picka (A33).

Bibliografia [Hilbert, 1956] D. Hilbert, S. Cohn—Vossen, Geometria Poglgdowa,
[Bagdasaryan, 2025] V. Bagdasaryan, G. Lukaszewicz, Obliczenia pdl PWN, 1956.

7 objetosci — trzy metody geometryczne, A%s. [Krych, 2019] M. Krych, Szereg Leibniza i punkty kratowe, A%g.
[Detemple, 1974] D. Detemple, J. M. Robertson, The equivalence of  [Lakatos, 2005] I. Lakatos, Dowody i refutacje. Logika odkrycia

FEuler’s and Pick’s theorems, The Mathematics Teacher, Vol. 67, matematycznego, Tikkun, 2005.

No. 3 (March 1974), pp. 222-226. [Olds, 2001] C. D. Olds A. Lax, G. P. Davidoff The Geometry of
[Gérnicki, 2024] J. Gérnicki, ,, Wodny” dowdd twierdzenia Picka, A%z. Numbers, The Mathematical Association of America, 2001.
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* Nauczyciel, Warszawa

Przyznajmy uczciwie, ze potowa
uczestnikéw tych zawoddéw otrzymata
maksymalng ocene za to zadanie.

Graf, jaki jest, kazdy widzi. PisaliSmy
o nich juz nie raz, np. w A‘:’1 | Ag4
czy Ags.

Dwukrotnie objawia si¢ tu zasada
szufladkowa Dirichleta. Ten bardzo
intuicyjny fakt gtosi, ze jesli

w s szufladach znajduje sie lgcznie

p pileczek, to w ktérejs szufladzie
znajduje si¢ ich co najmniej %.

O zasadzie szufladkowej pisaliSmy na
przykiad w|AZ i Al

Lemat 1 mozna udowodnié, stosujac
zasade szufladkows tylko raz.
Pozostawiamy to jako éwiczenie dla
Czytelnika Upraszczajacego.

Dirichlet w goérach  Pawet Rafal BIELINSKI*

Nieczesto zdarza sie, zeby zadanie z Miedzynarodowej Olimpiady Matematycznej
(International Mathematical Olympiad, IMO) bylto dostepne dla ucznia szkoly
podstawowej. Mamy na mys$li cos, co da sie wyjasni¢ w ciggu, powiedzmy,
jednego kétka matematycznego, bez koniecznosci wprowadzania trudnych pojeé,
twierdzen czy zaawansowanych narzedzi. Tym bardziej ciesza nas takie wtasnie
zadania, a jedno z nich pojawilo sie nie tak dawno, bo w roku 2020. Przytoczmy
(do$é dluga) tresé w oryginalnym brzmieniu.

IMO 2020, zadanie 4. Dana jest liczba catkowita n > 1. Na zboczu gory
znajduje sie n? stacji kolejki linowej, kazda na innej wysokoéci. Kazda z dwéch
firm obstugujacych kolejke, A i B, posiada dokladnie k wyciagbéw; kazdy z nich
umozliwia bezposredni przejazd z jednej ze stacji na pewna stacje polozona wyzej
(bez zatrzymywania si¢ po drodze). Wszystkie k wyciagéw firmy A maja k réznych
stacji poczatkowych oraz k réznych stacji konicowych, a ponadto jesli jeden wyciag
rozpoczyna trase wyzej od pewnego innego, to réwniez konczy trase wyzej od
niego. Te same warunki sa spelnione przez polaczenia obstugiwane przez firme B.
Powiemy, ze dwie stacje sa polaczone przez firme, jesli rozpoczynajac ze stacji
potozonej nizej, mozna dojechaé¢ do stacji polozonej wyzej, z uzyciem wylacznie
polaczen (jednego lub wigcej) obstugiwanych przez te firme (zadne inne sposoby
przemieszczania sie pomiedzy stacjami kolejki nie sa dozwolone).

Wyznaczy¢ najmniejsza dodatnia liczbe catkowita k, dla ktorej z cala pewnoscia
(niezaleznie od ukladu polaczen) istnieje para stacji polaczonych przez obydwie
firmy.

Dla matematyka jest czyms naturalnym przettumaczenie tresci tego zadania
na jezyk teorii graféw. Przy tym bedziemy uzywaé jedynie najprostszych jej
pojeé. Graf jest struktura zltozona z dwoch rodzajéw elementéw. Pierwszym

z nich sa wierzcholki, a drugim krawedzie, ktore stanowia polaczenia miedzy
tymi pierwszymi. Kazda krawedz taczy dwa wierzcholki, zwane jej koricami.
Jest jasne, ze taka struktura nadaje sie do modelowania réznych rodzajéw sieci,
roéwniez tej niemal jawnie opisanej w zadaniu, ztozonej ze stacji potaczonych
wyciggami.

Do rozwigzania naszego problemu uzyjemy nie jednego, lecz dwoch graféow, A
i B — po jednym dla kazdej z dwéch firm. Wierzchotkami kazdego z nich beda
stacje kolejki linowej, natomiast krawedziami — wyciagi odpowiedniej firmy.

W danym grafie zbiér wierzchotkéw, ktére sa miedzy soba polaczone
bezposrednio lub posrednio, nazywa sie spojng sktadowq lub po prostu sktadowq
tego grafu. Naszym celem jest wiec pokazanie, ze przy zalozeniach zadania

i dla odpowiednio duzej liczby k pewne dwa wierzchotki naleza do tej samej
skladowej grafu A oraz tej samej skladowej grafu B. Korzystnie byloby wiec,
gdyby w ktéryms$ z tych graféw zaistniala duza skladowa (bedzie wiele par stacji
do wyboru), a w drugim sktadowych bylo niewiele (zeby dana para miala duze
szanse znalez¢ sie w tej samej). Podany ponizej lemat jest sercem rozwiazania.

Lemat 1. Jesli kazdy z graféw A i B ma mniej niz n sktadowych, to pewne
dwa wierzcholki nalezg do tej samej skiadowej grafu A oraz tej samej skladowej
grafu B.

Dowéd. Poniewaz graf A ma n? wierzchotkéw podzielonych miedzy mniej niz n

sktadowych, wiec ktéras z jego sktadowych zawiera wiecej niz n wierzchotkow.
W szczegdlnosci skladowa ta ma wiecej wierzchotkéw, niz istnieje skltadowych
grafu B. Zatem pewne dwa z nich naleza do tej samej skladowej grafu B,
spelniajac tym samym warunki lematu. O

By¢ moze wigksza czes¢ rozwiazania wtasnie sie¢ dokonala. Pozostato jedynie
okresli¢, jak wielu wyciagéw potrzeba, aby zagwarantowaé polaczenie
istniejacych stacji w mniej niz n sktadowych.

Poniewaz stacje kolejki — wierzchotki graféw — potozone sa na réznych
wysokoéciach, mozemy ponumerowaé je liczbami naturalnymi 1,2,3,...,n2, od
polozonej najnizej do potozonej najwyze;j.
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Lemat 2. Rozwazamy wybrany z grafow A, B. Kazda
skltadowa tego grafu jest $ciezkq, ktora nie zawraca.
Scislej, jesli do pewnej skladowej nalezq wierzcholki

11 <9 < i3 < --- <1y, to jedyne krawedzie tej skladowej
8¢ postact tmlm41-

Dowdd. Z definicji spdjnej sktadowej wynika wprost,

ze zadna z tych stacji nie moze by¢ polaczona z zadna
spoza tej listy. Z drugiej strony, dana stacja moze by¢
polaczona bezposrednio tylko z jedna wyzsza od siebie
i jedna od siebie nizsza; istotnie, polaczenie a i b z c,
gdzie a < b < ¢, przeczyloby zalozeniu, ze wyzszy start
oznacza wyzszy koniec; analogicznie dla a > b > ¢. Zatem
jesli polaczone sa stacje ¢ < j, a takze j z [, to musi
zachodzi¢ j < [. Rozumujac tak dalej, dostajemy dowod
naszej obserwacji. O

W szczegdlnosci zaden z graféw A, B nie zawiera cyklu.

Mozemy teraz powiazac liczbe k z liczba sktadowych
grafu, a wiec z lematem 1.

7]

Lemat 3. Graf bez cykli o N wierzchotkach
i k krawedziach ma dokladnie N — k sktadowych.

Dowdd. Skonstruujemy nasz graf, zaczynajac od k =0

i dodajac krawedzie jedna po drugiej, w dowolnej
kolejnosci. Oczywiscie dla k = 0 kazdy wierzchotek

jest sam w swojej sktadowej, wiec sktadowych

jest N. Dodajac nowa krawedZ (na dowolnym

etapie konstrukeji), nie mozemy polaczyé niag pary
wierzchotkéw nalezacych do jednej sktadowej — wowczas
powstalby cykl. Oznacza to, ze kazda dodawana przez
nas krawedz taczy wierzcholki, ktére uprzednio nalezaly
do dwdch réznych sktadowych. Tym samym taczy ona
te dwie skladowe, zmniejszajac taczng ich liczbe o 1.
Dowdd jest zakoniczony. |

Jestesmy juz bardzo blisko rozwiazania. Z lematu 3
wynika, ze dla k = n? —n + 1 kazdy z graféw A, B
ma doktadnie n — 1 sktadowych, a wéwczas na mocy
lematu 1 istnieje para wierzchotkéw potaczona przez
kazda z dwoch firm. Bingo!

Pozostaje jeszcze jeden istotny szczegol. Czy jest to rzeczywiScie minimalne k7
Innymi stowy, czy moze zdarzy¢ sie, ze dwoch stacji o zadanej wlasnosci nie
znajdziemy przy k = n? — n? Za odpowiedz niech postuzy schemat przedstawiony
na marginesie (kazdy kolor odpowiada polaczeniom innej firmy).

Warto pokazywaé uczniom zadania takie, jak to — wymagajace, a jednak
dostepne. Moze nawet si¢ zdarzy¢, ze zostanie rozwigzane przez samych uczniéw.
Wazne jest jednak, by nie zdradza¢ zbyt wczesnie jego Zrodla, aby problem nie
zostal z gory uznany za niemozliwy do rozwiazania. Wlasciwie rozegrany, taki

fortel moze niejednej mtodej osobie pokazaé, jak wiele jest w jej zasiegu.

ﬁ Z.adania

Przygotowala Magda CWOJDZINSKA

F 1137. Sonda kosmiczna znajduje si¢ w przestrzeni miedzyplanetarnej

w odleglosci 570 000 km od Jowisza. Na pokladzie sondy znajduje si¢ szpula
magnetofonu o masie 1,3 kg i promieniu 12 cm, bedaca walcem obracajacym

Rozwigzania na str. [24

sie wokél swojej osi. Szpula zostaje wprawiona w ruch obrotowy z okresem 8 s.

Przyjmij, ze o$ obrotu szpuli pokrywa sie z jedna z osi gtéwnych sondy,
a moment bezwladnosci calej sondy (bez szpuli) wzgledem tej osi wynosi

1000 kg - m2.

padajace
Swiatlo
R

powietrze

szklo

szkto

Zakladamy, ze przed uruchomieniem magnetofonu sonda byla nieruchoma i ze
nie dzialaja na niag zadne sily zewnetrzne. Oblicz, o ile maksymalnie przesunie
sie srodek tarczy Jowisza na fotografii wykonanej z sondy, w wyniku jej obrotu,
po 2 minutach pracy magnetofonu.

F 1138. Na rysunku pokazano szklana soczewke o promieniu krzywizny
R = 3m umieszczona na plaskiej plytce szklanej i o$wietlonej od géry swiatlem
biatym. Wyznacz promienie r prazkéw interferencyjnych — promienie pierécieni

Newtona — odpowiadajacych barwie niebieskiej 460 nm. Przyjmij, ze r < R.

Przygotowat Dominik BUREK

M 1843. Udowodni¢, ze dla dowolnej liczby calkowitej
n > 1 liczby 1,2,...,2n mozna potaczyé w pary tak,
ze iloczyn sum liczb w parach jest kwadratem liczby
calkowitej.

M 1844. Na tablicy 10 x 10 znajduje sie pewna
liczba mréwek, kazda zasiada na innym polu. Co
minute kazda mréwka przechodzi do sasiedniego
pola na wschéd, na poludnie, na zachéd albo na

5

pénoc. Kontynuuje droge w tym samym kierunku

tak dlugo, jak to mozliwe. Kiedy mréwka dotrze do
krawedzi tablicy, zmienia zwrot (utrzymujac kierunek
poruszania si¢). Wiadomo, ze w ciagu godziny zadne
dwie mréowki nie spotkaly sie na tym samym polu. Jaka
jest maksymalna mozliwa liczba mréwek na tablicy?

M 1845. Sfera przecina kazda z plaszczyzn $cian
czworoscianu foremnego wzdtuz okregu. Promienie tych
okregéw wynosza odpowiednio 1, 2, 3 i 4. Czy promien
sfery moze by¢ rowny 57



*Student, Wydzial Fizyki, Uniwersytet
Warszawski

O rozwazaniach teoretycznych, ktére
umozliwily eksperymentalne
potwierdzenie indeterminizmu (czyli
nieprzewidywalnosci) kwantowych zjawisk,
mozna przeczytaé w Agl oraz w Aél.

Dowolng liczbe zespolona mozna zapisaé
w postaci z = a + b, gdzie a,b € R.
Wida¢ stad, ze istnieje jednoznaczna
odpowiednio$¢ migdzy liczbami
zespolonymi a parami liczb rzeczywistych.
Sprzezeniem zespolonym liczby z
nazywamy zZ = a — ib. Zwiezle i eleganckie
wprowadzenie do liczb zespolonych
przedstawil Marek Kordos w|A12]

o

Rzeczywiscie zespolona?
Patryk MICHALSKI*

Rowno wiek temu nastapito wielkie wzmozenie pracy wybitnych umystow,
ktore po kilku latach tworczego fermentu zaowocowalo powstaniem mechaniki
kwantowej w formie, jaka znamy dzis. Nowa teoria wymierzyla liczne ciosy
»zdrowemu rozsadkowi”, sprowadzajac na manowce nawet postaci pokroju
Alberta Einsteina. Szczegélnie silny zgrzyt z utartymi klasycznymi intuicjami —
budzacy gteboki niepokdj tworcy teorii wzglednosci — wywotata zasada gloszaca,
ze wynik pojedynczego pomiaru kwantowego nie jest przez nic z géry okreslony:
mozna przewidzie¢ jedynie prawdopodobienstwo otrzymania danego wyniku.
Spor dotyczacy tej kwestii sprowadzal sie w gruncie rzeczy do pytania, czy

nasz $wiat jest, czy tez nie jest deterministyczny — i zostal catkiem niedawno
rozstrzygniety na korzys$¢ mechaniki kwantowej dzieki stynnym nieréwnosciom
Bella. Zdrowy rozsadek jak zwykle okazal sie — cytujac Einsteina — ,zbiorem
przesadéw nabytych w dziecinstwie”.

Jeszcze inny problem nurtowal twércéw mechaniki kwantowej juz u jej zarania,
choé¢ szybko o nim zapomniano. Dotyczyt on pewnego szczegdlnego obiektu,
ktéry zdawal sie nierozerwalnie spleciony z matematyczna maszyneria teorii, lecz
znikal, gdy tylko docierano w obliczeniach do wielkosci, ktore rzeczywiscie da
si¢ zmierzy¢. Tak pisal o tym Erwin Schrédinger w liscie do Hendrika Lorentza
7z 6 czerwca 1926 roku [1]:

,2Najbardziej razace — i zastugujace na bezpoéredni sprzeciw — jest tutaj
uzycie liczb zespolonych”.

Liczby zespolone to osobliwe stworzenia. Powstaja jako rozszerzenie zbioru

liczb rzeczywistych poprzez ,,dorzucenie” do niego jednostki urojonej, ktorej
kwadrat z definicji jest réwny minus jeden: i> = —1. Jak sama nazwa wskazuje, na
pierwszy rzut oka trudno te wielko$¢ odnies¢ do jakichkolwiek przyziemnych
ludzkich do$wiadczen. Dlaczego wiec pojawia sie w modelu opisujacym
rzeczywistos¢?

Trzeba zaznaczyé, ze fizycy poznali liczby zespolone (i zaczeli je darzy¢
szczegdlnym uczuciem) na dlugo przed kwantowym przelomem. Sek w tym,

ze w ramach klasycznych teorii stuzyly one wylacznie jako potezne narzedzie
ulatwiajace rachunki. Bez liczb zespolonych klasyczna XIX-wieczna fizyka

tez by sobie poradzila — tylko potrzebowalaby do tego troche wiecej papieru.

Z mechanika kwantowa bylo inaczej. Jednostka urojona wprosita sie do
najbardziej fundamentalnych réwnan i nikt nie znalazt prostego sposobu, by sie
jej stamtad pozby¢. Poczatkowe oburzenie Ojcéw Zalozycieli minglo jednak, gdy
nowa teoria zaczela osiagaé pierwsze donioste sukcesy, a tym samym okazala sig
bardzo uzytecznym narzedziem. Temat czekal, zamieciony pod dywan, budzac
przez dtugi czas jedynie Sladowe zainteresowanie srodowiska naukowego.

Sytuacja zmienila si¢ pie¢ lat temu, gdy grupa fizykéw pod kierunkiem
Miguela Navascuésa rzucila nieco $wiatta na pytanie o role liczb zespolonych
w kwantowomechanicznym formalizmie [2]. Pokazali oni, ze przyjmujac pewne
standardowe zalozenia dotyczace matematycznej struktury teorii, zadna
alternatywna wersja mechaniki kwantowej oparta wylacznie na liczbach
rzeczywistych nie jest w stanie odtworzy¢ wszystkich przewidywan wersji
zespolonej. Co wigcej, zaproponowali schemat umozliwiajacy eksperymentalne
sprawdzenie, ktora wersja jest ta wlasciwa. Zanim jednak pochylimy sie nad
pomystami stojacymi za tym wynikiem, przyjrzyjmy sie blizej, jak liczby
zespolone pojawiaja sie¢ w opisie kwantowych zjawisk — i jaka taktyke mozna
by przyjac¢, zeby sie ich pozby¢.

Przywolamy najpierw najwazniejszy sposréd wspomnianych wyzej
standardowych postulatéw lezacych u podstaw mechaniki kwantowej. Zgodnie

z nim dowolnemu ukltadowi fizycznemu przyporzadkowaé mozna zbiér H zlozony
z wektorow, ktéry nazywa sie przestrzeniqg Hilberta. W zbiorze H zdefiniowane
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Iloczyn skalarny dwéch wektorow

¢, € H oznaczamy jako (¢p|).

Dziatanie to ma nastepujace wlasnosci:

o (2lY) = (¥l9),

e Dla ¢ = c19¢1 + c212 zachodzi
(¢lY) = c1 (S|Y1) + c2 (B|¢2).

Rozwazmy dwie pary wektorow:

¢1,%1 € Hi oraz ¢a, P2 € Ha. Wowczas
iloczyn skalarny wektoréw ¢1 ® ¢2 oraz
Y1 @ P2 € H1 ® Ha jest zdefiniowany jako
(B1]1) (B2]tp2).

Przyktadowo przestrzen Hilberta dwéch
spoczywajacych elektronéw ma zespolony
wymiar cztery w konwencjonalnej teorii,
a szesnascie (a nie osiem!) w przypadku
modyfikacji uzywajacej wyltacznie liczb
rzeczywistych. W drugim wypadku
dysponujemy wiec zbyt duzg liczba
parametréw rzeczywistych, w poréwnaniu
ze standardowsg zespolong mechanikg
kwantowg.

jest dzialanie nazywane iloczynem skalarnym, ktére ,poltyka” dowolne dwa
wektory, a ,wypluwa” liczbe. Kazdy stan kwantowy uktadu jest reprezentowany
przez wektor nalezacy do przestrzeni H, ktérego iloczyn skalarny z samym soba
wynosi jeden (o takim wektorze méwimy, ze jest znormalizowany). W wektorze
stanu zakodowane sa informacje pozwalajace wyznaczy¢ prawdopodobienstwa
wynikéw dowolnego pomiaru. Istotny punkt: skladowe wektorow stanu moga
by¢ albo liczbami zespolonymi, albo rzeczywistymi — zaleznie od rozpatrywanej
wersji teorii. Przyjmijmy na razie, ze to jedyne, czym obie wersje moga sie od
siebie réznic.

Wezmy teraz pod lupe najprostszy kwantowy uktad — spoczywajacy elektron.
Doswiadczenia przeprowadzone w 1922 roku przez Otto Sterna i Waltera
Gerlacha wykazaly, ze kazdy elektron posiada wewnetrzny moment pedu
nazywany spinem. O ile klasyczny moment pedu wynika z ruchu obrotowego, tak
spin jest po prostu ,2wbudowana” wtasnoscia czastki, jak na przyklad tadunek
elektryczny. Zeby bylo ciekawiej, jesli zmierzymy spin elektronu wzdluz dowolnie
wybranej osi, to mozemy uzyska¢ tylko dwa wyniki: albo spin skierowany

jest ,w gore”, albo ,w dol”, nic pomiedzy. Naturalne jest wiec zalozy¢, ze
przestrzen Hilberta takiego elektronu ma baze ztozona z dwéch wektorow,
ktore odpowiadaja dwém mozliwym stanom. Dowolny wektor stanu da sie
przedstawi¢ jako znormalizowana kombinacje wektoréw bazowych — fachowo
nazywa sie to superpozycjg. Wiemy poza tym, ze kazdy wektor stanu powinien
umozliwi¢ wyznaczenie prawdopodobienstwa uzyskania wyniku ,,w gore” lub

,w dét” wzdtuz dowolnej z trzech osi wspétrzednych, a do tego potrzeba trzech
rzeczywistych parametrow.

Policzmy, ile parametréw mozna zakodowaé w wektorze stanu w obydwu
wariantach teorii. W wersji zespolonej dwie sktadowe daja cztery parametry
rzeczywiste (kazda liczba zespolona to dwa parametry), jeden odpada przez
normalizacje, wiec zostaja trzy parametry — dokladnie tyle, ile trzeba. Ale jesli
wektor ma rzeczywiste sktadowe, to... jestedmy zgubieni — po uwzglednieniu
normalizacji zostaje tylko jeden parametr rzeczywisty! To za malo. Bez
kombinowania nie da sie opisa¢ spinu elektronu tylko za pomoca liczb
rzeczywistych.

Wida¢ wyraznie, ze alternatywna wersja mechaniki kwantowej wykorzystujaca
wylacznie liczby rzeczywiste musi opisywacé spoczywajacy elektron przy

uzyciu przestrzeni Hilberta, ktéra ma cztery, a nie dwa, wymiary. W ogdlnym
przypadku nalezy podwoi¢ wymiar przestrzeni zwiazanej z uktadem. To oznacza
obecno$¢ dodatkowych standéw, ktore z jakiego$ powodu nie sa rozrézniane przez
nasze urzadzenia pomiarowe. Pomyst moze wyglada dziwnie, ale nie mozna

go odrzuci¢ wylacznie na podstawie upodoban estetycznych. Szczegdlnie, ze
opierajac si¢ na tym pomysle, dla dowolnego uktadu sktadajacego sie z jednej
czastki o jednym stopniu swobody da si¢ wymysli¢ konstrukcje, ktéra daje
identyczne przewidywania jak teoria zespolona. Powtérzmy: jednej czastki

o jednym stopniu swobody. A co z ukladami, ktére nie maja tej wlasnosci?

Tu trzeba przywolaé kolejny standardowy postulat: jezeli uklad fizyczny

sklada sie z dwoch podukladéw, ktérym odpowiadaja przestrzenie Hilberta

‘H1 oraz Hs, to przestrzen Hilberta calego ukladu ma strukture ¢loczynu
tensorowego H1 @ Ho. Z grubsza rzecz biorac, zbiér Hi ® Ho to przestrzen
wektorowa, ktorej baze stanowig uporzadkowane pary wektoréw bazowych
przestrzeni H, i Ho z odpowiednio zdefiniowanym iloczynem skalarnym. Stad
wynika, ze wymiar przestrzeni calego uktadu to iloczyn wymiaréw przestrzeni
odpowiadajacych poszczegdlnym podukladom. Ustalilidmy juz wczesdniej, ze
przestrzen wymiaru zespolonego n jest w pewnym sensie réwnowazna przestrzeni
wymiaru rzeczywistego 2n. Jezeli wigc mamy dwie przestrzenie zespolonych
wymiaréw, n i m, to zespolony wymiar ich iloczynu tensorowego jest réwny nm,
a odpowiadajace im rzeczywiste przestrzenie maja wymiary réwne, odpowiednio,
2n, 2m oraz 2nm. Natomiast rzeczywisty wymiar iloczynu dwdch przestrzeni
wymiarow 2n i 2m jest rowny 4nm. Widaé wigc, ze jest zasadnicza réznica
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Jak wygladaja rachunki dotyczace
nieréwnosci Bella, mozna przeczytaé we

wspomnianych juz artykutach w Agl oraz

2
w A5,
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miedzy tensorowym rozmnazaniem przestrzeni nad liczbami zespolonymi

i rzeczywistymi. Pojawia sie wiec potencjalna mozliwo$¢ sprawdzenia, ktéry
sposob opisu lepiej pasuje do rzeczywistosci doswiadczalnej. Grupa Navascuésa
postanowila wykorzystaé¢ pojawiajaca si¢ tu ryse, zainspirowana pomystem,
ktéry pozwolil wezesniej potwierdzi¢ indeterminizm zjawisk kwantowych.

Rozwazmy Zrodio czastek, w ktorym zachodzi proces kreacji pary
elektron—pozyton. W przypadku gdy w rozwazanym procesie catkowity
moment pedu uktadu znika, sktadowe spinu powstatych w procesie czastek
wzdluz dowolnego kierunku musza by¢ przeciwnie skierowane. Obie czastki
wysytamy do odleglych obserwatoréw: elektron w jedna, a pozyton w druga
strone. Obserwatorzy dysponuja dwoma detektorami mierzacymi rzut spinu
ustawionymi w réznych kierunkach i w kazdym powtérzeniu eksperymentu
wybieraja losowo, z ktérego detektora korzystaja, wykonujac pomiar na
otrzymanej czastce. Jesli uzyskaja wynik ,,w gére”, to przypisuja mu warto$c¢ +1,
a jesli ,w doét”, to —1. Potem wspdélnie wyliczajg wartos¢ pewnego wyrazenia,
ktore zalezy od rezultatu pomiaréw i wybranych kierunkéw detektoréow. Po
wielu powtorzeniach eksperymentu mozna wyliczy¢ srednia wartosé tego
wyrazenia, ktora oznaczymy przez S. W 1964 roku John Bell pokazal, ze przy
odpowiednio sprytnym doborze wyrazenia i kierunkow detektorow dla teorii
deterministycznych zachodzi zawsze S < 2, a mechanika kwantowa dopuszcza
nawet S = 2v/2.

Moze wiec daloby sie tak dobra¢ wspomniane wyrazenie i kierunki detektorow,
zeby S byla ograniczona dla ,rzeczywistej” modyfikacji mechaniki kwantowej,

a dla konwencjonalnej teorii mogta osiaga¢ wieksze wartosci? Okazuje sie, ze

W opisanym scenariuszu nie jest to mozliwe. Wystarczy jednak wprowadzié¢
kilka drobnych ulepszeri: dodaé jedno Zrédlo i jednego obserwatora (wtedy jeden
obserwator otrzymuje dwie czastki, na ktérych wykonuje jednoczesny pomiar)
oraz zwiekszy¢ liczbe detektorow w dyspozycji obserwatorow. W tej konfiguracji
mozna znalezé takie wyrazenie i kierunki, ze dla dowolnej modyfikacji teorii,
ktéra uzywa wytacznie liczb rzeczywistych oraz spetnia opisane wyzej postulaty,
zachodzi S < 7,66. Standardowa teoria dopuszcza zaé S = 6v/2 ~ 8,48.

Wykonano juz dwa eksperymenty, ktérych wyniki wskazuja na stusznosé
standardowej wersji mechaniki kwantowej — w obydwu przypadkach
nieréwno$¢ obowiazujaca dla teorii opartych na liczbach rzeczywistych zostalta
zlamana [3] 4]. Nie jest to ostateczny werdykt, ale bardzo silna przeslanka.
Zamiast popada¢ w samozadowolenie, zastanéwmy sie jednak, jakie wnioski
mozna z tego wszystkiego wyciagnaé. Z duzym prawdopodobienistwem nalezy
odrzuci¢ mozliwosé, ze formalizm mechaniki kwantowej da sie¢ oprzeé¢ wytacznie
na liczbach rzeczywistych, jesli ma spelnia¢ wspomniane wyzej standardowe
postulaty. Moze jednak daloby sie odrzuci¢ jedno z krepujacych zatozen?
Najmniej kontrowersyjnym kandydatem wydaje si¢ ostatni postulat, ten
dotyczacy iloczynu tensorowego. W zamian nalezaloby wtedy zaproponowaé
inny przepis na modelowanie ztozonych uktadéw.

W istocie da sie to zrobié¢, wystarczy tylko uzyé pomystowego sposobu zapisu
jednostek rzeczywistej i urojonej:

= 1) =0 )

Latwo sprawdzi¢, ze powyzsze macierze zachowuja sie dokladnie tak, jak
powinny. Przy odrobinie sprytu da sie na tej podstawie zbudowaé rzeczywista
teorie, ktéra nie przestrzega postulatu iloczynu tensorowego i daje identyczne
przewidywania jak zespolona wersja — wystarczy w odpowiedni sposéb zastapié
wszystkie liczby zespolone macierzami [5]. Czy jednak nie jest to po prostu
»zakamuflowane” uzycie liczb zespolonych? Mozna powiedzieé, ze tak. Spéjrzmy
na to z innej strony. Ten pozorny kamuflaz pokazuje, ze liczby zespolone wcale
nie s3 tak odlegle od rzeczywistosci, jak mogloby sie wydawaé. Tak jak niegdys
w przypadku liczb niewymiernych czy ujemnych, zdrowy rozsadek znéw okazuje
si¢ niezbyt dobrym doradca w sprawach zmatematyzowanego opisu Swiata.
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at Otwarty 12°: Dwanascie

BCL’/’ﬂO mlej PA WL[K Politechnika Slaska

System pozycyjny zapisu liczb jest jednym Jak na dloni widaé¢, ze zakonczenia ludzkich konczyn

z najdojrzalszych osiagnieé¢ mysli abstrakcyjne;j. gérnych sprzyjaja nie tylko systemowi dziesietnemu, ale
Najbardziej przyzwyczajeni jestedmy do systemu i dwunastkowemu! Zauwazmy, ze pieciopalczasta dlon
dziesietnego (ktéry wzial sie zapewne stad, ze na na czterech palcach ma po trzy kostki kazda — w sumie
ogot tyle palcow majg razem obie dlonie jednego dwanascie. Z kciukiem tych kostek mielibysmy 14, ale
czlowieka). Po chwilowym zastanowieniu mozna arytmetyczna przydatnosé systemu czternastkowego
zauwazy¢, ze (czesto nieSwiadomie) mamy do czynienia jest nie lepsza niz dziesigtnego, zatem kciukowi mozna
z wieloma innymi podstawami. Kazdy otaczajacy da¢ inne zadanie — i traktowaé¢ go jako ,,wskaznik”

nas uktad scalony pracuje w systemie dwéjkowym. utatwiajacy liczenie w kostkowym systemie dozenalnym.
Dzieki Sumerom i Babilonczykom mamy 60 sekund Zatem na jednej dloni mozemy liczyé¢ do tuzina, a druga
w kazdej z 60 minut w godzinie. Wlasnie ze wzgleddw mozemy tuziny zlicza¢ — wigc na palcach i do grosa
»czasowych” jednym z najblizszych nam systeméw doliczymy. Zreszta tak wlasnie liczy si¢ do dzi§ w wielu
niedziesietnych jest system dwunastkowy (dozenalny). regionach Azji.

Raczej nie trzeba byé fanem Stranger
Things, aby domys$li¢ sig, skad pochodza
obie nazwy, ale znam przypadek,

w ktérym znajomosé tego serialu pomogta
rozszyfrowaé jedng z nich!

Czesto si¢ tutaj pomija fakt, ze liczby 1/5
i 1/10 traca te wlasnosé — ale kto by sie
przejmowal takimi liczbami jak 1/5

w dwunastkowym $wiecie!

Wspomniana przewaga tak naprawde jest
zaniedbywalna: nawet tak ogromna liczba
jak googol w zapisie dwunastkowym ma
jedynie kilka cyfr mniej niz w zapisie
dziesigtnym.

Aby zapisywaé liczby w systemie dwunastkowym, musimy uzupelnié zbiér
dziesieciu cyfr (0, 1, ..., 9) dwiema dodatkowymi. W uzyciu czesto sa litery

A (10) i B (11) — pochodzace z systemu szesnastkowego. Bardziej oryginalnym
(i coraz popularniejszym) rozwiazaniem sa odbicia lustrzane cyfr 2 i 3, czyli €1 €.
W 2015 roku dostaly one swoje miejsca w Unikodzie: € to U+218A, natomiast &
to U+218B. Nazywa si¢ je, odpowiednio, dek i el.

Dodajmy tutaj, ze tworzenie nowych symboli poprzez izometryczne
przeksztalcanie istniejacych nie jest niczym nowym w matematyce. W ten
sposéb irlandzki matematyk William Hamilton stworzyl symbol V —

jako obrécenie greckiej litery A (nazwa nowego symbolu, nabla, zostala
zaproponowana przez Williama Robertsona Smitha i oznacza starozytna
asyryjska harfe).

Dek i el zostaly rozpowszechnione przez Dozenal Society of America

— stowarzyszenie, ktorego gtéwnym celem jest propagowanie systemu
dwunastkowego. Jest ono réwniez wydawca czasopisma Duodecimal Bulletin,
ktérego pierwszy numer ukazal si¢ w roku 1161, czyli osiem dekad (sic!) temu.
Swi(—gtym Graalem Stowarzyszenia jest niezwykle rozczulajaca ,konwersja
cywilizacyjna” z systemu dziesietnego na dwunastkowy. Jako gléwny argument
za globalng zmiang podaje sie fakt, ze liczba 12 ma relatywnie duzo dzielnikow
i dzigki temu rozpieszcza prostymi utamkami z zycia codziennego: nie tylko
polowy i ¢wiartki, ale takze trzecie, szoste i dwunaste czedci calodci maja tadny
(czyt. skonczony) zapis. Jedna z przeszkéd na drodze do celu dozenalséw jest
Swiat pomiaréw, ktoéry od wielu dekad jest urzadzony dziesietnie — przedrostki
jednostek miar w uktadzie SI to catkowite potegi liczby 10 — wiec ,wielka
zmiana podstawy” oznaczalaby niezwykle skomplikowang zmiane standardow
na bardzo wielu plaszczyznach.

Co ciekawe, historia zna przypadek, w ktérym nie udato sie zastapié systemu
dwunastkowego systemem dziesietnym! W trakcie XVIII-wiecznej rewolucji
francuskiej planowano daleko idace zmiany w mierzeniu czasu: podzial doby
na 10 godzin, z ktérych kazda ma 100 minut po 100 sekund. Liczba 12 miata
zostaé oszczedzona jedynie w licznodci miesiecy. Rewolucyjne zmiany mierzenia
czasu sie ostatecznie nie przyjelty — z tego samego powodu, z ktérego system
dwunastkowy nigdy nie wyprze systemu dziesietnego w wiekszosci pozostalych
kontekstow.

Na koniec dodajmy, ze niektérzy nieroztropni dozenalsi moga sie postugiwaé
réwniez takim argumentem wyzszosci systemu dwunastkowego nad dziesietnym,
ze im wieksza podstawa, tym krétszy zapis danej liczby. Entuzjastom tego
uzasadnienia proponuje zapoznac sie z cyframi cysterskimi.
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Warto przy okazji wspomniedé, ze 2 lutego
obchodzimy Dzieri Nalesnika, zas w tym
roku 12 lutego wypada Tlusty Czwartek.
Smacznego!

E. Gyé6ri, G. Turan, Stack of pancakes
(1978).

W.H. Gates, Ch.H. Papadimitriou,
Bounds for sorting by prefiz reversal
(1979).

Sortowanie nalesnikow
Marcin PECZARSKI*

Jacob Eli Goodman (pod pseudonimem Harry Dweighter) w roku 1975 zamiescil
w The American Mathematical Monthly nastepujacy problem: ,,Nasz szef kuchni
jest niechlujny, i gdy przygotowuje stos naleénikéw, wychodza one wszystkie
réznej wielkosci. Dlatego, gdy niose je klientowi, w drodze do stolika porzadkuje
je (aby najmniejszy znalazl sie na gérze i kolejno az do najwiekszego na spodzie)
chwytajac kilka z gory i odwracajac je, powtarzajac te czynno$é (zmieniajac
liczbe odwracanych [nale$nikéw]) tyle razy, ile jest to konieczne. Jesli jest

n nalesnikéw, jaka jest maksymalna liczba odwrécen (jako funkcja n), ktére
bede musial wykonaé, aby je uporzadkowac¢?”

Funkcje, o ktérej mowa powyzej, oznaczamy f(n). Stos nale$nikéw
reprezentujemy jako permutacje liczb od 1, ktéra reprezentuje najmniejszy
nales$nik, do n, ktéra reprezentuje najwigkszy naleénik, gdzie n > 2.
Porzadkowanie naleénikow odpowiada sortowaniu rosnaco elementéw permutacji
przez odwracanie kolejnosci elementéw w jej prefiksach, dlatego problem pojawia
sie w literaturze réwniez pod nazwa sorting by prefiz reversal. Sortowanie
permutacji (4, 6,2,5,1,3) moze wygladaé¢ na przyklad tak (liczba nad strzatka
oznacza dlugo$é odwracanego prefiksu):

(4,6,2,5,1,3) % (2,6,4,5,1,3) % (5,4,6,2,1,3)
2 (4,5,6,2,1,3) > (1,2,6,5,4,3)
5 (3,4,5,6,2,1) > (6,5,4,3,2,1) > (1,2,3,4,5,6).

Aby posortowaé¢ dowolng permutacje, rozwazamy kolejno elementy
t=n,n—1,...,3, zachowujac niezmiennik, ze elementy wigksze od t sa juz na
wlasciwych pozycjach. Jedli ¢ nie jest na pozycji t ani na poczatku permutacji,
to jest na pozycji od 2 do t — 1 i odwracamy tyle elementéw, aby element ¢
znalazl si¢ na poczatku permutacji. Jedli ¢ jest juz na poczatku permutacji, to
odwracamy t elementéw, co umieszcza t na pozycji t. W ten sposéb za pomoca
co najwyzej 2(n — 2) odwrdcenn umieszczamy na docelowych pozycjach elementy
od 3 do n. Jesli po tym elementy 1 i 2 nie sa we wtasciwej kolejnosci, to za
pomoca jednego odwrdcenia ustawiamy je w takiej kolejnosci. Powyzszy
algorytm pokazuje, ze f(n) < 2n—3 dlan > 2.

Przedstawimy teraz lepszy algorytm. Wymyslili go Ervin Gy6ri i Gyorgy

Turdn oraz niezaleznie od nich William Henry Gates III (bardziej znany jako
Bill Gates) i Christos Harilaos Papadimitriou. Réwnolegle z opisem samego
algorytmu bedziemy analizowac¢ jego ztozonosé, a w tym celu potrzebujemy
wprowadzi¢ pewne definicje. Dwa elementy na sasiednich pozycjach permutacji
tworza dobre sgsiedztwo, jesli ich wartosci réznig sie o 1. Przyjmujemy ponadto,
ze dobre sasiedztwo tworza tez elementy 1 i n. Maksymalny podciag elementow
(co najmniej dwoch) tworzacych dobre sasiedztwa nazywamy blokiemn. Element
nienalezacy do zadnego bloku nazywamy wolnym. Przykladowo w permutacji
(3,5,4,7,1,2,6) mamy dobre sasiedztwa (5,4), (7,1) i (1,2), bloki (5,4) i (7,1,2)
oraz elementy wolne 3 i 6. Dodawanie liczby catkowitej do elementu permutacji
lub odejmowanie liczby catkowitej od elementu permutacji wykonujemy
cyklicznie: n4+1=1,n+2=2,1—-1=mn,1—-2=n— 1 itd. Przyjmujemy,

ze po wykonaniu £ odwrécen potencjal uzyskanej permutacji jest rowny

&y =1+ aw + Bb, gdzie w jest liczba elementéw wolnych w tej permutacji,

b jest liczba blokéow w tej permutacji, a « i 8 sa pewnymi stalymi, ktorych
wartosci wyznaczymy pézniej. Przez A® oznaczamy zmiane potencjatu

w sekwencji odwrécen. Wielokropkiem zastepujemy podciag elementow
permutacji nietworzacy dobrych sasiedztw z elementami go poprzedzajacym

i nastepujacym po nim. Wielokropek moze tez oznaczaé podciag pusty.
Podkresleniem zastepujemy podciag bloku, byé¢ moze pusty. Niech d € {—1,1}.
Zaleznie od postaci permutacji rozpatrujemy nastepujace przypadki, za kazdym
razem przedstawiajac réwniez odwrécenia, jakich nalezy wowczas dokonad.
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1. Permutacja zaczyna si¢ elementem wolnym ¢. lub

(a)

1 < k <n—1. Pierwszym elementem bloku jest ¢,
a ostatnim ¢t + (k — 1)d.

(a)

Istnieje element wolny ¢ + d: (t,__t+(k—1d,....t+kd,...,__t—d,...)

(..., t+d,...) = (.., tt+d,...). = (t+kd,...,t+k—-1d,__,t,...,__,t—d,...
Jedno odwrécenie zamienia dwa elementy wolne = (. ttkdt+(k=1d,__t,..., ,t—d,...
w jeden blok, czyli A® =1 —2a + 3. —{t—-d,__,...t,_ t+(k—1)d,t+kd,...)

Istnieje blok zaczynajacy sie elementem t + d: = (e, t—dt,__t+(k—1d,t+kd,...).
Cztery odwrécenia zmniejszaja o jeden

(t,...,t+d,__,...)=> (.. t,t+d,__,...).
.. .. . ) liczby elementéw wolnych i blokéw, czyli
Jedno odwrécenie zmniejsza o jeden liczbe AD=4—a-—8

1 t6 Inych LA®P=1-a.
clementow wo'nyeh, czyt @ (d) Istnieje blok, ktérego pierwszym elementem jest

(c) Istnieja bloki koriczace sie elementami ¢t 4 d t+ kd:

it—d:

(t,__t+(k—1d,....,t+kd,__,...)

(toy ttd,_t—d,...) =+ k-Dd,__,t,...;t+kd,__,...)
= (t+d, ot it —d,.) = (oyt,_t+(k=1)d,t+kd,__,...).
= (o ttdt,._t—d,...) Istnieje blok, ktérego ostatnim elementem jest
= {t—d,__,...t,t+d,__,...) t+ kd:
= (e, _t—ditit+d,__,...). (t,_ t+(k—1)d,..., . t+kd...)

Cztery odwrdcenia zmniejszaja o jeden = (t+kd,__,...,t+(k-1d,__,t,...)

liczby elementéw wolnych i blokéw, czyli L o

’ = (... t+kd,t+ (k—1)d t,...).

A(I):4—Ol—ﬂ ( y— + ) +( )7777 )

Dwa odwrdécenia zmniejszaja o jeden liczbe
. Permutacja zaczyna sie blokiem o dlugosci k, gdzie blokéw, czyli A® =2 — .

3. Jesli permutacja nie pasuje do zadnego z powyzszych
. g 5 . )
przypadkéw, to jest blokiem. Jesli nie j(s‘ to
Istnieje element wolny ¢ — d: permutacja (1,___,n), to zaleznie od jej postaci mamy

(4 ot (h=1)d,.. t—d,...) nastepujace pl"xy])a(lk :

(a) (n777 1) l> (]‘777 n)?
S t+(k=1d,__ tt—d,...). —
(b) (n—1,__,1,n) == (1,__,n)dlan>3

Jedno odwrocenie zmniejsza o jeden liczbe " o1
elementéw wolnych, czyli A® =1 — a. (c) gf’ 1*;?3” )= @m-1_,1n) (1,_n)
Istnieje blok zaczynajacy sie elementem t — d: anzo el n

d (2,_,n1)—(n,_,1)—=(1,__,n)dlan>3,
t, _t+(k=1d,...;t=d,__,...) (e) (1,n,_,2) % (2,__,n,1)dlan>3idalejjak

= (., t+k-1d,__ t,t—d,__,...). w punkcie [3.d

Jedno odwrécenie zmniejsza o jeden liczbe B (t+1,_n1,_ )25 (0, t+1,1,__ )5
blokéw, czyli A® =1 — 8. (¢, 1,t+1,_ _.n)5 1, n)da2<t<
Istnieja blok konczacy sie elementem t — d n—2,
i element wolny t + kd. Zaleznie od ich (g) (t,__,1n,_ t+1) 5 (t+1,_ ,n 1, t)dla
wzajemnego polozenia stosujemy odwrdcenia 2 <t<n—21idalej jak w punkme
t,__,t+ (k- 1)d ceey_yt—d, .t kd, ) Bedziemy wymagacé, aby po odwréceniach z punktow 1

i 2 potencjal permutacji nie zwiekszal sie, czyli A® < 0,

— (t+kd,. —d,__ +k-1)d,__t...) wiec musza byé spelnione nieréwnoéci:
= (.. t—d t+kdt—|—(k d,__t,...) a>1
—>(t, t+(k:—1)d,t+kd,..., —d,__,...) (6) atB>4

— (o tt+kdt+ (k—1)d,__ tt—d,__,...) 2<B< 20— 1.

Potencjal @ poczatkowej permutacji wynosi aw + $b. Poniewaz kazdy blok

zawiera co najmniej dwa elementy, wiec w < n — 2b, czyli @9 < an + (8 — 2a)b.
Korzystajac z ostatniej nieréwnosci w @, dostajemy ¢ < an —b < an. Rownosé
®y = an zachodzi, gdy permutacja ma n elementéw wolnych. Kazda sekwencja
odwrécen z punktéw 1 i 2 zmniejsza liczbe elementéw wolnych lub blokéw, wiec

po skoriczonej liczbie m odwrécen dochodzimy do punktu 3. Wtedy @, = m + 3.

W punkcie 3, aby dokoniczy¢ sortowanie, wykonujemy co najwyzej cztery
odwrécenia, zatem f(n) < m+4=®,, — 8+ 4. Poniewaz zalozylidmy, ze potencjal
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B. Chitturi et al., An (18/11)n upper
bound for sorting by prefix reversals
(2009).

permutacji nie rosnie, wiec P, < ®g i stad f(n) < an — 8 + 4. Pozostaje znalezé
rozwiazanie uktadu nieréwnosci @ minimalizujace warto$¢ a. Jest to przyklad
zagadnienia programowania liniowego. Dla dwdch niewiadomych mozemy je
rozwiazaé, stosujac interpretacje geometryczna, patrz rysunek na marginesie.
Otrzymujemy o = 2 i = Z. Zatem f(n) < 5(n+1)/3.

Nieco lepsze gérne oszacowanie f(n) < (18/11)n + O(1) udowodnil Bhadrachalam
Chitturi ze wspotpracownikami. Ich dowéd wymaga jednak rozpatrzenia 2220
przypadkéw. Znamy dokladnie wartosci f(n) dla n < 19, patrz tabela nizej (jest
to ciag o numerze A058986| w The On-Line Encyclopedia of Integer Sequences).

n |2[3]45|/6|7|8]9 (1011|1213 |14|15|16 |17 |18 19
fn)|1(3|4]5|7[8|9|10|11|13|14|15]16|17 |18 19|20 |22

W mojej pracy Note on pancake sorting, opublikowanej w czasopidmie
Information Processing Letters, zajmowalem sie oszacowaniami
dolnymi. Skonstruowalem dla wigkszych n permutacje swiadczace, ze
fn) = |(15n+9)/14].

Na koniec zauwazmy, ze w calym artykule milczaco zakladaliSmy, ze strony
nalesnika sg nierozréznialne. Kazdy, kto smazyt naleéniki, wie jednak, ze zwykle
jedna strona wychodzi bardziej przysmazona. Rozwaza sie wiec wersje problemu
sortowania nalesnikow tak, aby wszystkie byly zwrdcone przysmazong strona

w dol, ale o tym innym razem.

Genetyka w czwartym wymiarze

Dzi$ bedzie o nukleomie. Wiem, sprawa jest niewesota. Kiedy zacznie sig
mowi¢ o genetyce, zaséb potrzebnych sléw moze zniecheci¢ nawet najbardziej
wytrwalych stuchaczy. Nazwy czasteczek (np. DNA, RNA) i konkretnych
struktur komérkowych (np. nukleosom, chromosom, jadro komérkowe) placza
sie ze stowami okreslajacymi pojecia abstrakcyjne méwiace o funkeji (gen, kod
genetyczny, transkrypcja, translacja). Czas pedzi, a lista pojeé si¢ wydluza. Jak
za tym nadazyc¢?

Kiedy zaczetam uczy¢ sie o DNA, na czarnej tablicy rysowano nam geny. Dluga
cienka kreska, na niej zaznaczone pudeleczko podpisane jakim$ skrétem (np.
DIN7) oraz (czasami) dodane jeszcze dwa duzo mniejsze, z przodu i z tytu.
Gdzies na dlugiej nici DNA organizmu X znajduje sie kawatek, nazwany genem
DIN7, ktéry ma element rozpoznawany przez bialka odczytujace informacje
genetyczna (promotor) i miejsce, gdzie odczyt sie koniczy (terminator). Schludne
to i proste. Ale. ..

Przychodzi mi na mys$l inny obraz: jadro komoérkowe jako wielka platanina
cienkich nitek, chaos, batagan, DNA jak rozwiniete motki wiéczek upchane
kolanem w szafce z materialami do szydetkowania. I informacja, ze gdyby te
wszystkie nitki DNA wyciagnaé z ludzkiej komorki, rozplataé i potozy¢ jedna za
druga, to mierzyloby to wszystko 2 metry! DWA METRY!?

Pierwszy odczyt sekwencji ludzkiego genomu sprawe dodatkowo zagmatwal.
Whbrew oczekiwaniom — gendéw ludzkich jest jedynie okoto 30 tysiecy. Zaledwie
2% ludzkiego DNA koduje biatka, a olbrzymia jego czes$¢ to (wtedy tak
nazywany) ,S$mieciowy DNA”.

A7 nadszed! czas, kiedy ludzie zaczeli grzebaé w tych ,,$mieciach”. I trzeba bylo
stworzy¢ duzo nowych pojeé. A gdzie nukleom?

W 2017 roku konsorcjum kilkunastu instytutow badawczych z USA oraz
kilku organizacji z reszty $wiata rozpoczeto projekt o nazwie ,,Nucleome 4D”.
Przedsiewzigcie potezne, bo wymagato nie tylko zebrania i analizy olbrzymiej
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iloéci danych, ale takze wykorzystania najnowszych réznorodnych technik,
fizycznych, genetycznych i biochemicznych oraz takich opartych na modelowaniu
matematycznym i AI. W grudniu 2025 roku w Nature ukazala si¢ praca
opisujaca pierwsze wyniki tego przedsiewzigcia.

Relatywnie mala liczba genéw ludzkich oznaczala, ze rozwdj i dzialanie
organizmu ludzkiego nie jest wynikiem aktywnosci wielkiej liczby genow, a raczej
regulacji ich odczytu oraz proporcji iloéciowych wielu biatek. Te proporcje
roztozone w czasie wplywaja na kierunek rozwoju i dziatanie komérki, tkanki

i calego organizmu. Za tym musi sta¢ precyzyjny system kontroli, hierarchiczna
struktura. Tego wtasnie konsorcjum poszukiwalto: jak w trzech wymiarach
wyglada DNA w jadrze komérkowym, jakie czynniki o tym decyduja i jak
zmienia si¢ to w czasie.

Praca z Nature odkrywa czesS¢ tajemnicy tego systemu. DNA w jadrze
komoérkowym to nie chaotyczna platanina nici, ale precyzyjnie utozona
przestrzennie dynamiczna struktura. Architekture tej struktury utrzymuja
biatka. Samo jadro jest podzielone na strefy: w srodku znajduje sie centrum
aktywnego odczytu informacji genetycznej, a na obrzezach znajduja sie geny
malo aktywne, w wiekszosci zupelnie wyciszone. Nici DNA podzielone sa na
domeny TAD (ang. Topologically Associating Domain), w jadrze komoérkowym
jest ich okoto 2-3 tysiace. Kazda domena funkcjonuje odrebnie, a ich granice
wyznacza przylaczone do DNA biatko CTCF. W granicach danej domeny DNA
przyjmuje postac petli. W catym jadrze odkryto ich okoto 140 tysiecy.

Powstaja dzieki biatku, ktore ksztaltem przypomina obraczke. W jego otwor
wsuwa sie DNA, petla ktéra sie w ten sposéb stwarza, moze sie wydtuzaé jak
petelka sznuréwki. ,,Obraczka” zbliza do siebie fizycznie dwa, czasami bardzo
odlegle, fragmenty DNA. Jedli jeden z nich jest wlacznikiem genéw, a drugi
zawiera gen — struktura spowoduje aktywacje jego odczytu. Wyjasnia to znane
przypadki choréb, kiedy mutacja je wywolujaca nie znajduje si¢ ani w genie
odpowiadajacym za dany proces, ani w jego poblizu.

U wigkszosci zdrowych ludzi plan budowy struktury 3D jest taki sam. Domeny TAD
sg niemal identyczne u wszystkich. Z petlami bywa réznie. Pewne kluczowe petle
DNA réwniez bedg takie same, poniewaz zawieraja tzw. ,house keeping genes”,
geny odpowiedzialne za kluczowe procesy dla zycia komérki i organizmu. Jednak
okolo 30% genomu tworzy rézne osobniczo struktury 3D. Odkryto, ze takze u tej
samej osoby wystepuja roznice, szczegdlnie wyrazne miedzy komorkami réznych
tkanek. Zmieniajaca sie w czasie struktura 3D sprawia, ze komodrki uzyskuja swoj
charakterystyczny ksztalt i podejmuja specyficzne funkcje.

Architektura 3D jest zatem hierarchiczna. Najnizszy
poziom organizacji to petle DNA, laczace ,wlacznik”

z genem, wplywajac na aktywacje genéw. TAD-y

to oddzielone od siebie bialkiem CTCF ,dzielnice”
wewnatrz jadra rzadko kontaktujace si¢ z sasiednimi.
Jadro ma swoje przedzialy: wewnetrzny, gdzie znajduja
sie aktywne geny, oraz obrzeza, gdzie ciasno upakowany
DNA jest uspiony. W konicu kazdy z 46 chromosoméw
zajmuje swoja wlasna, okreslona ,strefe” w jadrze.

Dzieki uzyciu Al i modelowaniu matematycznemu
naukowcy moga przewidzie¢, jak zmienia si¢ forma
przestrzenna DNA, na podstawie samej jego
sekwencji. Pozwala to zrozumieé, dlaczego mutacje

w ,niekodujacych” czeSciach DNA moga prowadzié¢

do powaznych choréb, takich jak nowotwory czy
zaburzenia rozwojowe, poprzez ,rozrywanie” lub bledne
tworzenie sie tych petli. Choroby te to np. biataczki,
chtoniaki, glejaki, w ktérych aktywacji moga ulec geny
zwiazane z podzialami komérkowymi. Inne przypadki
to choroby genetyczne, jak zesp6l Cornelii de Lange,
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w ktérym nieprawidlowo dzialta kohezyna, biatko bedace
yzszywaczem” trzymajacym petle DNA razem. Wiele
mutacji zwigzanych z chorobami takimi jak cukrzyca
typu 2, choroba Crohna czy luszczyca znajduje sie

w miejscach niekodujacych. W koncu okazuje sie, ze
niektore wirusy po wejsciu do jadra komérki catkowicie
reorganizuja jego architekture. Wiedza o tym, jak dziala
nukleom w czterech wymiarach, pomoze w tworzeniu
nowych strategii terapeutycznych.

Gen jako kreska i pudetko. Wiedzialam, Zze to nie moze
by¢ takie proste. Ani tak chaotyczne jak spaghetti
w garnku. Ale teraz krajobraz jawi sie rozlegly i trudny
do pojecia. A co$ mi méwi, ze to czubek géry lodowe;j.
No céz, zobaczymy, co bedzie dalej. . .
Artykuly:
1. ,An integrated view of the structure and function of the

human 4D nucleome”, Dekker J. i wsp., Nature (2025), DOI:

10.1038/s41586-025-09890-3.
2. ,The 4D nucleome project”, Dekker J. i wsp., Nature 549 (2017)

DOI: 10.1038 /nature23884. B
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* Wydzial Matematyki i Informatyki UJ

Zapis [x] oznacza najmniejszg liczbe
calkowitg nie mniejsza od z, czyli

[z] =1 <z < [z]. Warto$é¢ [x] nazywa
sig czasem sufitem liczby x.

Przykladowy poliapez (oktapez) oraz jego
uwypuklenie. Przerywane linie oznaczaja

brzegi minimalnych paséw. Zgodnie

z przedstawiong w tekscie konwencjg ten

poliapez ma obwéd 10, pole 8,

a ograniczaja go pasy o szeroko$ciach 2, 4
i3.

Rzqd w poliapezie to jego czes¢ wspdlna
z pasem o szerokosci 1, w dowolnym
z trzech kierunkéw.

O obwodach poliapezéw
Piotr PIKUL*

W artykule O obwodach poliomin (zob. AS,) wyprowadzilismy jawny wzér na
minimalny obwo6d ksztaltu ulozonego z n kwadratowych kafelkéw (kwadratéw
jednostkowych), wynoszacy 2 [2/n]. Zapowiedzieli§my wéwczas, ze po

tym tagodnym wprowadzeniu w metody szacowania obwodow zmierzymy

sie z bardziej skomplikowanym przypadkiem kafelkéw tréjkatnych. Stowa
dotrzymujemy i zapraszamy do lektury.

Na poczatku wypadaloby jeszcze wyjasni¢ pochodzenie obecnego w tytule
terminu ,,poliapez”. Figury zlozone z tréjkatéw réwnobocznych zwyklo nazywaé
sie ,,poliamondami”, poniewaz po angielsku dwa tréojkaty tworza ,,di-amond”
(karo, ¢). Skoro jednak ,diament” nie jest w Polsce zwyczajowa nazwa rombu,
mozemy nazywaé konfiguracje tréjkatéw ,poliapezami”, poniewaz trzy tworza
Htr(i)-apez”.

al ARE Tt

Ksztalty utozone z 1-5 tréjkatéw réwnobocznych, czyli monapez, diapez, triapez, 3 tetrapezy
i 4 pentapezy

Poczatkowe wartosci ciggu minimalnych obwodéw odpowiadajacych kolejnym
liczbom tréjkatnych kafelkéw wynosza: 3,4,5,6,7 i znowu 6 — z szesciu trojkatéw
mozemy ulozy¢ szesciokat foremny. Oczywiscie dla tak malej liczby pol

mozna recznie sprawdzaé wszystkie uklady, ale i tak warto sie zastanowié,
dlaczego ,,nagle” obwdd si¢ zmniejsza. Albo inaczej: czy minimalny obwéd 7
dla pieciu pdél mozna wyznaczy¢ prosciej? Mozna: z uktadem kafelkow skojarzmy
graf odpowiadajacy temu, ktére pola posiadaja wspélny bok. Zauwazmy, ze
najkrétszy cykl, jaki moze w takim grafie wystapié¢, ma dlugos¢ 6, poniewaz
zawsze skrecamy o 60° i potrzebujemy co najmniej 6 takich zakretéw, aby
wykonaé¢ pelne okrazenie. Stad pie¢ kafelkow nie tworzy cyklu, a to prowadzi
do wniosku, ze krawedzi w grafie jest co najwyzej k < n — 1 = 4. Obwdd wynosi
zatem co najmniej 3n — 2k > 15 — 8 = 7 (od liczby wszystkich bokéw tréjkatéw
odejmujemy krawedzie styku).

Na siatce kwadratowej mieliSmy bardzo uzyteczne pojecie wypuklosci, ktére
jednak nie przeklada sie bezposrednio na siatke trojkatna. Latwiej uogdlnié
»brostokat ograniczajacy” — przeciecie najwezszego poziomego i pionowego

pasa obejmujacego poliomino. Na siatce tréjkatnej musimy przeciaé trzy
najwezsze pasy, réownolegte do odpowiednich linii siatki i zawierajace dany
poliapez. W pierwszym odruchu mozna by nazwac¢ taka otoczke ,szeSciokatem
ograniczajacym” poliapez, ale liczba bokéw powstalej figury moze by¢ mniejsza
od 6! Bedziemy zatem uzywali okreslenia uwypuklenie poliapezu.

Zaznaczmy w tym miejscu, ze dla uproszczenia zapisu w dalszych rozwazaniach
dtugosci w kierunkach siatki mierzone beda dtugos$ciami bokéw jej ,,oczek”
(tzn. najmniejszych tworzonych przez nig tréjkatéw réwnobocznych), zad
dlugosci w kierunkach prostopadlych do linii siatki (szeroko$ci paséw) mierzymy
wysokosciami ,,oczek”. Oczywiscie jednostka pola powierzchni bedzie pole
pojedynczego ,,oczka” siatki.

Pokazemy teraz, ze, podobnie jak dla kwadratowych kafelkéw, obwdd poliapezu
jest ograniczony z dotu przez obwdd jego uwypuklenia (na siatce kwadratowej
bylo to prawda dla prostokgta ograniczajgcego). Bez straty ogdlnosci zalézmy,
ze badana figura jest spojna, tzn. ze zaden rzad nie jest pusty. Jest bowiem
jasne, ze minimalizujac obwod, niczego nie tracimy, gdy stykamy ze soba
spojne skladowe figury. Tym razem mamy jednak trzy kierunki wierszy/kolumn
(rzedéw). Rozwazmy wiec promienie wychodzace z kazdej jednostkowej krawedzi
uwypuklenia do jego wnetrza, w obu dostepnych kierunkach (trzeci jest
réwnolegly do krawedzi). W dana krawedz wyjsciowego poliapezu moga trafié¢ co
najwyzej dwa promienie (zakladamy, ze jest on nieprzezroczysty dla promieni),
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Czytelnik Obeznany z Geometrycznym
Pojeciem Wypuktosci moze wykazaé, ze
poliapez jest wypuklym podzbiorem
plaszczyzny wtedy i tylko wtedy, gdy jest
réwny swojemu uvwypukleniu. Warto
zaznaczy¢, ze uwypuklenie nie jest

w ogdblnosci tozsame z klasyczna otoczka
wypuklaq.

Kto uwaza, ze to zwigkszanie obwodu o 1
nie jest oczywiste, ma nie tylko racje, ale
i ¢wiczenie do rozwigzanial

Wypuktly poliapez z odcigtym

i doklejonym rze¢dem. Podane ditugosdci
rzedéw odnosza si¢ do dluzszej podstawy
trapezu. Ich pole to dwukrotnosé dlugosci
minus jeden.

a liczba promieni to dwukrotnos¢ obwodu uwypuklenia. Stad liczba wszystkich
krawedzi nie moze by¢ mniejsza od wspomnianego obwodu. Zauwazmy, ze

dla krawedzi poliapezu lezacych na obwodzie jego uwypuklenia oba promienie
zaczynaja sie i koncza w tym samym punkcie.

Kolejny istotny fakt to stwierdzenie, ze figura maksymalizujaca pole przy
danym obwodzie musi byé wypukla (réwna swojemu uwypukleniu), poniewaz

w przeciwnym wypadku moglibySmy ja uwypuklié, nie zwigkszajac obwodu.
Formalnie kto$§ méglby zapytaé: czy jedli obwdd sie zmniejszy, to czy czegos

nie zepsujemy. Minimalny obwdéd nie jest przeciez rosnaca funkcja liczby podl,
wiec moze maksymalne pole nie musi rosnaé wraz z obwodem? Otéz okazuje
sie, ze w te druga strone zalezno$¢ musi byé rosnaca, poniewaz zawsze mozenwy
dostawi¢ jeden kafelek w taki sposéb, aby zaréwno pole, jak i obwdd wzrosly o 1.
Potencjalny spadek dlugosci obwodu po uwypukleniu mozna zatem ,,odrobi¢”
przy dalszym powiekszaniu figury.

Teraz zastanéwmy sie, jak duze pole moze mieé¢ poliapez o danym obwodzie.
Niech P4(l) bedzie maksymalnym polem poliapezu o danym obwodzie [ > 3. Takie
maksymalne pole bedzie dla nas dobrym punktem odniesienia w kontekscie
wyjséciowego problemu, gdyz jesli przez O4(n) oznaczymy minimalny obwdd
poliapezu o polu n > 1, to zachodzi O4(P4(l)) = I, co teraz pokazemy. Ustalmy
{ > 3 iniech S bedzie wypuklym poliapezem o obwodzie [ i polu P4({). Gdyby
istnial poliapez o obwodzie I’ < 1 i polu P4(l), to jego uwypuklenie S’ miatoby
obwdd mniejszy niz I i pole co najmniej P4(l). Do wypuktego poliapezu zawsze
mozna dodaé nowy rzad, zwickszajac jego obwdd o 1. Pozwala to powiekszyé S’
do obwodu I, zwigkszajac przy tym jego pole ponad wartos$é Py(l) — uzyskujemy
wiec sprzecznosé. Oznacza to, ze faktycznie musi zachodzi¢ O4(P4(1)) = 1.

Wazna wlasnoscia takich maksymalnych poliapezéw jest fakt, ze ich szerokosci
(chodzi o szerokosci trzech paséw, ktérych przecieciem jest dany poliapez) nie
mogg sie rézni¢ o wiecej niz jeden. Gdyby bowiem wypukly poliapez miat
szerokosci a > ¢ > b oraz a > b+ 2, to wowczas mozna by stworzy¢ poliapez

o szerokosciach (a — 1,¢,b+ 1), ktéry bedzie mial wigksze pole, przy identycznym
obwodzie: do tej konstrukcji wystarczy odciaé¢ jeden rzad przy brzegu pasa

o szerokoéci a oraz dotozy¢ rzad przy krawedzi pasa o szerokosci b. Dalej,
poniewaz a — 1 > b, to mozna tak dobra¢ krawedzie paséw, aby sie nie spotykaty
nawet po odcigciu (nachodzenie na siebie paséw odcinanych i doklejanych
skomplikowaloby poréwnywanie figur). Latwo obliczyé¢, ze dlugosé odcietego
pasa jest mniejsza od dlugosci fragmentu doklejanego, czyli procedura faktycznie
doprowadzi do zwiekszenia pola figury.

Skoro wiemy, ze maksymalne poliapezy maja szeroko$ci réznigce sie co najwyzej
o 1, to kolejng istotna obserwacja bedzie to, ze osie paséw powinny przecinacé
sie mozliwie blisko siebie. Poniewaz trzy liczby réznia sie co najwyzej o 1,
przynajmniej dwie sa réwne, czyli mozemy mysle¢ o naszym poliapezie jako

o wycinku rombu (czesci wspdlnej dwéch paséw o szerokosci m). Odcielidémy od
niego tréjkaty o nieujemnych wysokosciach hi oraz hs. Ponadto suma hi + ho
jest stata. Figura sklada sie wowczas z 2m? — (h? + h3) pdl. Latwo sprawdzié, ze
w takiej sytuacji suma kwadratéw jest tym mniejsza, im mniejsza jest réznica
|h1 — hal, ktéra jest dwukrotnoscia odleglodci osi trzeciego pasa od érodka rombu.
Jest to oczywiste, biorac pod uwage fakt, ze w rombie im blizej przekatnej, tym
dtuzsze rzedy. Pozwolimy sobie opusci¢ dowdd algebraiczny tych obserwacji.

Ustalone dotad wtasnosci maksymalnych poliapezéw przy danym obwodzie
pozwalaja juz dla kazdego I € N wyznaczy¢ je jednoznacznie z dokladnoscia
do izometrii. Okazuje sie, ze przedstawienie liczby naturalnej jako sumy
trzech liczb rézniacych sie o co najwyzej jeden jest jednoznaczne (kolejnosé
nas nie interesuje), a ksztalt maksymalnego poliapezu o takich szerokosciach
réwniez jest jednoznaczny. W zaleznosci od reszty z dzielenia obwodu [

przez 6 otrzymujemy wiec dokladne wartosci Pq(l). Poniewaz nie rozwazamy
wypuklych poliapezéw o szerokosci 0, wygodnie bedzie oznacza¢ obwody jako
=06k —5,6k—4,...,6k — 1,6k (ujemne reszty) dla k > 1.
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Na rysunkach pole kazdego duzego tréjkata to k2, zas zakolorowane tréjkaty
oznaczajg obszary nakryte dwoma réwnoleglobokami o polu 2k.

| =6k l=6k—1 l=6k—2 l=6k—3 l=6k—4 l=6k—-5
iiiii @ _
fffff aR\VAN 2 VAN
ok, 2k, 2k 2k, 2k, 2k—1 2%, 2k—1,2k—1  2k—1,2k—1,2k—1 2k—1,2k—1,2k—2 2k—1,2k—2,2k—2

Korzystamy z monotonicznosci

funkcji @ — [\/@—I

Wykazang wlasnie rownosé mozna opisaé¢ zwartym

n+v6m

wzorem:

Oq(n):2’7 >

Pokazemy bowiem, ze dla liczby catkowitej k
i rzeczywistej x wartosé w(k,z) = 2 [k;—ﬂ
najmniejsza liczba catkowita nie mniejsza od = o tej
samej parzystosci co k. Wprost z definicji, parzystosé
w(k, z) jest réwna parzystosci k, poniewaz sufit jest
zawsze liczba catkowita. Z kolei wiedzac, ze [y] > v,

otrzymujemy

w(k, x)

>k+z—k=ux.

Zauwazmy, ze po pomnozeniu pola przez 6 mozemy je latwo poréwnadé
z kwadratem liczby I:

6P, (6k) = 62k> = (6k)? > (6k —1)2
6P,(6k — 1) 62k% — 12k —6 = (6k —1)2 — 7 = (6k — 2)% + 12k — 10
6P,(6k —2) = 6%k*—2-12k = (6k—2)>—4=(6k—3)>+12k—9
6P, (6k —3) = 6%k* —3-12k +6 = (6k —3)? — 3 = (6k —4)? + 12k — 10
6P,(6k —4) = 62k? —4- 12k + 12 = (6k —4)? —4 = (6k — 5)? + 12k — 13
6P, (6k —5) = 62k? — 512k + 18 = (6k — 5)2 — 7 = (6k — 6)% + 12k — 18

Zatem w kazdym przypadku (I — 1)? < 6P4(l) < [? (pamietajmy, ze [ > 3; nie
istnieje poliapez o obwodzie 2). Po spierwiastkowaniu otrzymujemy nieréwnosci

rownowazne stwierdzeniu: [ = { 6Pq(l)—‘. Jesli dobierzemy takie [, Ze zachodza

nieréwnosci Py(l — 1) < n < Py(l), otrzymamy [ — 1 < (\/EW < I. Gdyby
O4(n) < 1, wéwezas n < Pq(Oq(n)) < Pq(l — 1), gdzie pierwsza nieréwnosé¢ wynika
wprost z definicji P, i O4, a druga z monotonicznoéci Py. Przeczy to zalozeniu
P,(l = 1) < n. Zatem zawsze zachodzi Oq(n) =1 > (\/@ Zauwazmy poza tym,
ze obwdd musi byé tej samej parzystodci co n, poniewaz wynosi 3n — 2s, gdzie
s to liczba wspélnych bokéw pél tworzacych figure. Stad wniosek, ze

O4(n) > min{€ eEN:l>V6ni 2|(n — é)}
Okazuje sie, ze tak naprawde zachodzi tu réwno$é. Najpierw rozwazmy
przypadek | = (\/W . Gdy przyjrzymy sie poprzednim rysunkom, zauwazymy,
ze kolejne maksymalne poliapezy réznia sie jednym rzedem pdl. Zabierajac
kolejne komorki ze skrajnego rzedu maksymalnego poliapezu o obwodzie [, albo
zwiekszamy obwdd o 1 (jesli zabrane komérki tworza trapez, ew. zdegenerowany
do jednego tréjkata), albo go nie zmieniamy (gdy zabrane komérki tworza
réwnoleglobok). Zatem faktycznie, minimalny obwdd bedzie alternowal
jednoczesnie z parzystoscia n (staly byé nie moze) pomiedzy wartosciami [ a [ + 1.
Niestety moze si¢ zdarzy¢, ze | = [\/6711 + 1. Zauwazmy, ze Po(l — 1) +1 < n,
zatem w takim przypadku 6P4(I — 1) +6 < 6n < (I — 1)2. Z trzeciej kolumny
wzorow odczytujemy, ze moze sie tak zdarzy¢ tylko, gdy [ przystaje modulo 6 do
1 lub 5, a ponadto musi by¢ n = Py(l — 1) + 1 = Py([v/6n]) + 1. Uzyskanie pola n
(oraz wlasciwej parzystosci obwodu!) z maksymalnego poliapezu o obwodzie
l—-1= {\/67’ jest zatem mozliwe poprzez dodanie jednego tréjkata.

Druga nieréwnosé, [y] <y + 1, dowodzi, ze

k 2
w(k,x) < 2% —k=xz+2.
—n.
-‘ W otrzymanym przedziale lezy doktadnie jedna

liczba catkowita o tej samej parzystosci co k. Zatem
dowiedli$my, ze w(n,/6n) jest réwne najmniejszej
liczbie catkowitej, wiekszej od v/6n, ktora jest tej samej
parzystosci co n.

—k to

Po szczegbéltowym omodwieniu siatki kwadratowej

i trojkatnej pozostaje wyznaczyé¢ wzor na minimalny
obwdd dla ukladow kafelkéw szedciokatnych. To zadanie
zostawimy juz jednak jako ¢wiczenie Czytelnikowi.
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Klub 44 F

Zadania z fizyki nr 812, 813

Termin nadsylania rozwigzan: 30 IV 2026

Redaguje Elzbieta ZAWISTOWSKA

812. Na drewniana pochylnie tworzaca kat o z poziomem wciagana jest za
pomoca sznurka skrzynia. Wspélczynnik tarcia skrzyni o pochylnie wynosi p.
Pod jakim katem do poziomu nalezy skierowaé sznurek, aby z najmniejszym

wysitkiem wciggaé¢ skrzynie z zadanym przyspieszeniem a?

813. Dwie czastki o masach m i M oraz tadunkach o jednakowych wartoséciach

Czoléwka ligi zadaniowej Klub 44 F
po zakoriczeniu roku szkolnego 2024/25
i sprawdzeniu zadan
800 (WT = 2,55), 801 (WT = 2,25)

z numeru 6/2024

bezwzglednych, ale przeciwnych znakach, poruszaja sie po okregach pod
wplywem przyciggania elektrycznego. Wartosé predkosci czastki o masie m
momentalnie zwigkszono, nie zmieniajac przy tym kierunku predkosci. Ile razy
co najmniej wzrosta ta warto$é, jezeli w wyniku tego czastki rozlecialy sie na

Jacek Konieczny Poznan 41,41 N , L, L

Jan Zambrzycki Bialystok  4-39,07 nieskonczona odlegtosé od siebie?

Ryszard Wozniak Krakéw 34,00 A ;

Andrzej Nowogrodzki Chocianéw  3-32,28 Rozwigzania zadan z numeru 10/2025 B

Pawel Perkowski Ozaréw Maz. 6-29,93 w
Krzysztof Zygan Lubin 26,89 Przypominamy tre$é zadan: h
Tomasz Wl.eteCha Tarn(zw 18-21,64 804. Chtopiec znajduje si¢ w punkcie A na brzegu rzeki, ktérej
Pawel Kubit Krakéw 20,30 BT . RPN T ~ S Lo -
Marian Lupiezowiec Gliwice 3-14.49 ?)1(31.11\()Tt 11111 1’,11.\\_\, 1{()51(11» (rys. l).» (,h'h:]).l(‘( mtv)'u‘ biec pn' lu/:(t;_',u A 1 D
Krzysztof Magiera Losiéw 413,42 z 1»)1 (;(l»l\um ig 1*/1 ply 03¢ I‘Z(.‘,kEl z })1((‘{“.\().'\,(',121 U W A;;]((‘(l»(\,m -V\U(-l.\,.' . Rys. 1
Zbigniew Galias Krakow 1-12.77 Przy czym u <. \”\ Jnkl/(‘.] u(]logl()mfl od pu.nl.\'tu A /nn;]dn'](‘ sig
’ na brzegu punkt C, z ktérego chlopiec powinien zaczaé plynaé, A
Lista obejmuje uczestnikéw ligi, ktérych aby dotrzeé¢ do punktu B w najkrétszym czasie? Odleglo$é |BD)| A
stan konta wynosi przynajmniej punktu B od brzegu wynosi h, odlegto$é |AD| jest réwna . T
10 punktdéw i ktérzy przystali rozwigzanie 805, Para jednakowych matlych kulek A i B polaczonych
co najmniej jednego zadania z rocznika niewazka nicia o dlugosci | zaczyna zeSlizgiwadé sie z gltadkiego ! 7y B
2023, 2024 lub 2025. stotu o wysokosci [, przy czym w chwili poczatkowej kulka B h
znajduje si¢ na wysokosci h = 21/3 nad podlogg (rys. 2). Po
dotknigciu podlogi kulka B przykleja si¢ do niej, a kulka A y y >
spada w tym momencie ze stolu. Od jakiej wysokosci kulki A z
nad podlogg ni¢ bedzie napieta? Rys. 2

804. Postuzymy sie analogia z zalamaniem fali na granicy
dwoch osrodkéw, co zgodnie z zasada Fermata gwarantuje
minimum czasu dotarcia odpowiedniego promienia do
punktu B. Warunek dotarcia tego promienia do punktu B
zastapimy warunkiem dotarcia odpowiedniego frontu
falowego do tego punktu. Najpierw rozwazymy prostszy
przypadek nieruchomej wody, np. brzeg jeziora.

Przypadek w = 0 (rysunek ponizej):

- ~ o
// - ~ S <
4 // \\ RS
4 7 > ~
Vo, SLB SO TS
— ~_ A7~ N N
ro > S S S S S <
;o uT R~ ~_ ~ o ~ .
[ o N ao\/\ RS N
Co D M

Dany front falowy jest jednoczesnie zbiorem punktéw,
do ktérych moze dotrzeé¢ chlopiec w zadanym czasie,
zaczynajac ptynaé z réznych punktéw na brzegu.
Zaznaczony kolorem czerwonym front, docierajacy

do punktu B w minimalnym czasie ¢, odpowiada
promieniowi zalamanemu w punkcie Cy, ktéry pokrywa
sie z optymalna trajektoria chlopca ACyB.

Front falowy NM jest, zgodnie z zasada Huygensa,
obwiednig fal kulistych wychodzacych z réznych punktéw
wejscia chlopca do wody na odcinku |AM | = vt, czyli
jest styczna do okregu o promieniu ut i sSrodku A
poprowadzong z punktu M. Z tréjkata AN M mamy:
. _ut _u _ sinag

smao = vt v sin90°’
zgodnie z prawem zalamania. Poniewaz
htgxo= hu/vv? — u?, wiec odleglto$é punktu Cp od
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punktu A wynosi:

|ACy| = |AD| — |CoD| =1 — hu//v? — u2.

Przypadek w # 0 (rysunek ponizej):

ut s \\\\\
Ah\\lﬁ\ o] ~

CiD C M

o A

Skorzystamy z wynikéw dla nieruchomej wody

i uwzglednimy unoszenie z pradem rzeki wzgledem
brzegu. Promien ut wzgledem nieruchomej wody

musi wystartowa¢ z punktu O przesunietego w lewo
wzgledem punktu A o odcinek o dlugosci |OA| = wt,
ktory pokonala woda w czasie t. Polozenie punktu M
nie zmienia si¢, gdyz nie zalezy od predkosci pradu
rzeki: |[AM| = vt. Styczna M N wyznacza nachylenie
wzgledem brzegu frontéw falowych. Z tréjkata ONM
mamy sina = u/(w + v). Front NM nie dociera

do punktu B w czasie t. Czyni to nastepny front,
zaznaczony kolorem czerwonym, nachylony do brzegu
pod tym samym katem «. Temu frontowi odpowiada
optymalna trajektoria chlopca AC'B wzgledem brzegu,
zaznaczona kolorem czerwonym, oraz zatamany
promien u7, wzgledem nieruchomej wody, wychodzacy
z punktu Cy. Punkt C} jest przesunigty w prawo
wzgledem Cp, bo a < ag . Punkt C' jest przesuniety

w prawo wzgledem C4 o odcinek |C1C| = wr, ktéry
pokonata woda w czasie ptyniecia chtopca, 7. Poniewaz
|DC| =|C,C| — |C1D| = wr — htga, a z tréjkata CyBD
mamy cos @ = h/ut, skad czas plyniecia:

T =h/(ucosa) = h(w +v)/(uy/(w + v)* — u?),



wiec odlegtoéé punktu C' od punktu A wynosi
|AC| = |AD|+ |DC| =1+ wT — htga

=1+ h(w? — u? + wv)/(uy/(w + v)? — u?).

805. Zgodnie z zasada zachowania energii predkosé
kulki A w chwili ze§lizgiwania sie ze stolu wynosi

(1) vo = /2¢1/3.

Po zeslizgnieciu sie ze stotu kulka A porusza si¢ po
paraboli, dopdki ni¢ nie jest napieta. Wprowadzajac
uktad wspoélrzednych, jak na rysunku 2, mozemy zapisac
wspolrzedne kulki w chwili ¢:

(2) x = wvot, y=1—gt?/2.

Nié ponownie stanie sie naciagnieta, gdy odlegloéé |BA|
zréwna sie z dlugoscia nici:
22+ y? =12

Podstawiajac wspoélrzedne (2) i uwzgledniajac (1),
otrzymujemy réwnanie:

gt? (gt?/4—1/3) = 0.
Z niego znajdujemy chwile czasu, w ktérej ni¢ ponownie
zostanie napieta: t2 = 41/(3¢g) (pierwiastek t = 0 odpowiada
chwili zeslizgiwania sie ciezarka A ze stolu). Korzystajac
z drugiego z réwnan (2), otrzymujemy szukana wysoko$é:

y=1/3.

Podsumowanie ligi zadaniowej Klub 44 F w roku szkolnym 2024/2025 po 801 zadaniach.

Zaskakujaco wysoki okazal si¢ wspdétczynnik trudnosci
zadania 794 (WT = 3,7) z optyki falowej. Z soczewki
skupiajgcej wycieto waski srodkowy pasek, a pozostate

czesci ztoZono ze sobg. Na osi optycznej przed soczewkq

w odleglosci wiekszej niz ogniskowa umieszczono punktowe
Zrodio swiatta monochromatycznego. Nalezalo znaleZé
maksymalng liczbe prgzkéw interferencyjnych, jaka moze
powstaé na ekranie za soczewkq. Wtasciwe podejscie do tego
zadania, czyli badanie interferencji §wiatta z obrazéw Zrédla
od dwoéch czedci soczewki, zaprezentowal jedynie Tomasz
Wietecha. Niestety zaraz na poczatku rozwiazania pomylit
(zapewne przez roztargnienie) promienie biegnace z réznych
czesci soczewki.

Drugie miejsce pod wzgledem wspdlczynnika trudnodci
zajelo zadanie 783 (WT = 3,45). Mala naladowana kulka,
zawieszona na nici w jednorodnym polu magnetycznym
skierowanym pionowo, zostala odchylona o maty kaqt

z potozenia réwnowagi i puszczona swobodnie. Nalezalo
znalezé czas, po ktorym plaszczyzna wahan obrdci sie

o kgt 2. Wymagato to doé¢ zmudnych rachunkéw.

W rozwigzaniu firmowym problem ten uproszczono,
korzystajac z superpozycji rozwigzan liniowych. Konrad
Kapcia zauwazyl, ze réwnania sa analogiczne do réwnan
ruchu wahadta Foucaulta, i korzystajac z zacytowanej
literatury na ten temat, otrzymat poprawny wynik. Tomasz
Wietecha samodzielnie rozwigzal te rownania. Zmienit
wprawdzie warunki poczatkowe, co wptywa na ksztaltt
trajektorii, jaka zakres$la kulka w ptaszczyznie poziomej,
ale nie zmienia wyniku zadania.

Zadanie 787 (WT = 3,25) z termodynamiki polegalo na
znalezieniu stanu réwnowagi w izolowanym cieplnie naczyniu
wypetnionym helem i polgczonym matymi otworkamsi

z dwiema objetosSciami réwniez zawierajgcymsi hel, w ktorych
utrzymywano stale ci$nienie i rézne temperatury. Autorem
jedynego poprawnego rozwigzania jest Krzysztof Zygan.

Zadanie 792 (WT = 3,23) réwniez wymagalo zastosowania
metod statystycznych. W pionowym cylindrze zamknietym
od gory ttokiem poruszaly sie chaotycznie kulki ze znang
Sredniq predkosciq kwadratowq. Tlok zaczeto podnosié

z zadang stalq predkosScig i zatrzymano na dwa razy wiekszej
wysokosci. Nalezalo znaleZé sredniqg predkosé ustalong

po dlugim czasie, nie uvwzgledniajgc strat energii podczas
zderzen oraz sil grawitacji. W pelni poprawne rozwigzanie
nadestal Pawel Perkowski.

W zadaniu 799 (WT = 3,01) z elektromagnetyzmu elektron
krazyt po orbicie kolowej w jednorodnym polu magnetycznym.
Indukcja pola magnetycznego wzrosta powoli trzy razy,
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w czasie przewyziszajacym wielokrotnie okres obrotu. Nalezatlo
odpowiedzied, ile zmienil sie w tym czasie promien orbity.
Poniewaz zmiana pola byta bardzo powolna, mozna byto
przyjaé, ze mimo zmiany pola magnetycznego, a co za

tym idzie predkosci i promienia, tor elektronu w czasie
jednego okresu pozostaje w przyblizeniu kotowy. Nie byto
natomiast uzasadnione zaltozenie, jakie przyjeta wiekszosé
autoréw rozwigzan, ze predko$é elektronu nie zmienia sie.
Maksymalng ocene za to zadanie otrzymal Krzysztof
Zygan, ktéry skorzystal z faktu, ze dipolowy moment
magnetyczny naladowanej czastki w wolno zmieniajacym
si¢ polu magnetycznym jest zachowany (podat odno$nik do
literatury), i otrzymal poprawny wynik.

W zadaniu 785 (WT = 3,00) z elektrostatyki kondensator
plaski podigczony do Zrédia napiecia znajdowat sie

w jednorodnym polu elektrycznym, ktorego linie byly
prostopadie do oktadek kondensatora. Trzeba byto obliczyé
prace, jakq nalezy wykonaé, aby obréci¢ ten kondensator

o kgt ™ wokdl osi prostopadiej do linii zewnetrznego pola
elektrycznego. Pawel Perkowski nadestatl rozwigzanie takie
jak firmowe, pozostali autorzy rozwiazali inne zadanie, gdy
kondensator nie jest podlaczony do zrédia.

Nikt nie rozwiazat do konca poprawnie zadania 784

(WT = 2,6) z optyki geometrycznej. Szklany pryzmat

o matym kqcie lamigcym umieszczono w pewnej odlegtosci
od soczewki skupiajgcej tak, zZe jedna z jego $cian byla
prostopadia do osi optycznej soczewki. Po drugiej stronie
soczewki w jej ognisku umieszczono punktowe Zrodto Swiatla.
Po przejsciu Swiatla przez soczewke, odbiciu od Scianek
pryzmatu i ponownym przejsciu przez soczewke powstawaly
dwa obrazy w znanej odleglosci od siebie. Nalezato znalezé
wspolezynnik zalamania szkla, z ktérego wykonano pryzmat.
Zadanie nie bylo trudne, ale autorzy rozwiazan ograniczyli
sie do rozwazenia jednego przypadku ustawienia pryzmatu,
gdy prostopadla do osi optycznej $cianka pryzmatu byta
blizsza soczewki.

Pawel Perkowski jest autorem 9 rozwiagzan, ktére uzyskaly
maksymalna ocene, drugie miejsce zajmuje Tomasz
Wietecha (7), trzecie Krzysztof Zygan (6).

W omawianym roku Tomasz Wietecha po raz
osiemnasty (!) przekroczyt prég 44 punktow,
Konrad Kapcia po raz trzeci.

Cieszy, ze dwaj panowie po paru latach przestoju odnowili
swéj kontakt z Klubem 44 F, martwi sladowy udziat
uczniéw szkédl srednich, mimo ze rozwigzanie zdecydowanej
wigkszosci zadan nie wymaga zaawansowanej matematyki.



Klub 44 M

Zadania z matematyki nr 915, 916

Termin nadsytania rozwigzan: 30 IV 2026

Redaguje Marcin E. KUCZMA

1-44

ciagla pochodna.

915. Funkcja parzysta f: R — R, z wartodcia f(0) = 0, ma w calym zbiorze R

(a) Udowodnié, ze jesli f ma w punkcie 0 pochodng drugiego rzedu (skoriczong),

Lista uczestnikéw ligi zadaniowej
Klub 44 M
po zakoriczeniu sezonu
(roku szkolnego) 2024/25

to istnieja dwa przystajace okregi takie, ze poczatek ukladu wspélrzednych jest
jedynym punktem wspélnym wykresu funkcji f z kazdym z tych okregdw.
(b) Podaé przyklad pokazujacy, ze bez zalozenia istnienia f”(0) teza czesci (a)

Szymon Kitowski - 43,92 . . .2

Barbara Mroczek - 43,05 nie musi zachodzi¢.

Andrzej Sudot — 42,56

Andrzej Daniluk - 240,76 916. Wzdluz okregu nalezy rozmiesci¢ groszki w trzech réznych kolorach; mamy

Mikotaj Znamierowski — 40,68 L k& fed kol l kéw d . ké . kol

Marian Eupiczowicc 1-38.54 groszkéw jednego koloru, [ groszkéw drugiego, m groszkéw trzeciego koloru.

gfiysztofSFﬂmliﬁski - ?i?’gﬁ’ Znalez¢ warunek algebraiczny wiazacy liczby k, 1, m, konieczny i dostateczny na
OKsana OW1 - T 9 . . . . 7’ . . .

Michal Adamaszek  — 9-37,30 to, by istnialo rozmieszczenie, w ktérym zadne dwa groszki jednakowego koloru

Stanistaw Bednarek -~ 3-37,24 : 3 :

Jedrzej Biedrzycki - 32,29 ne SQSladu‘]Q'

Btlazej Zmija - 2-29,84 Zad ic 916 7 P 1 Kubit z Krak

Mikolaj Pater ~ 12079 adanie zaproponowat pan Pawel Kubit z Krakowa.

Marcin Matogrosz - 4-27,82 . . ,

Piotr Kumor —~ 16-27,28 Rozwigzania zadan z numeru 10/2025

Janusz Wojtal - 26,30

Janusz Fiett - 4-25,17 D o F tredd gadat-

Tomasz Wietecha _ 15-23.97 Przypominamy tres¢ zadan:

Maciej Mostowski - 1-22,90 907. Niech n bedzie ustalong liczbg naturalng; n > 3. Znalezé najwigkszg liczbe naturalng m, dla

Lukasz Merta - 322,87 ktorej istniejg rézne liczby rzeczywiste z1, ..., z,, takie, ze warto$é¢ wyrazenia

Radostaw Kujawa - 1-20,21

Andrzej Kurach - 4-20,01 -

Marek Prauza - 4-19,57 Z z

Norbert Porwol - 1-18,50

Pawel Labedzki - 1-18,29 =0

Grzegorz Karpowicz — 2-17,90 jest jednakowa dla kazdej pary réznych numeréw k,l € {1 ..... m}.

Janusz Olszewski — 25-17,53

Pawel Kubit - 817,31 908. Wyznaczy¢ wszystkie liczby calkowite a > 1 o tej wlasnosci, ze dla kazdej liczby catkowitej

Patryk Jagniewski - 1-16,62 n>1sumal+a+...4+a""! jest liczby tréjkatna.

Pawel Najman 9-16,42

Bartek Knapik - 13,39 907. Oznaczmy te wspélng warto$é przez A. Mamy réwnosé (xp — x;)A =

n+1

n+1
Ly,

Legenda (przykladowo): stan konta —z
9-37,30 oznacza, ze uczestnik juz l
dziewieciokrotnie zdobyl 44 punkty,
a w kolejnej (dziesigtej) rundzie ma

37,30 punktu.

Zestawienie obejmuje wszystkich
uczestnikéw ligi, ktérzy spelniaja
nastepujace dwa warunki:
— stan ich konta (w aktualnie
wykonywanej rundzie) wynosi co najmniej
13 punktoéw;

przystali rozwigzanie co najmniej
jednego zadania z rocznika 2023, 2024
lub 2025.

Nie drukujemy wigc nazwisk tych
uczestnikéw, ktérzy rozstali sie z ligg trzy
lata temu (lub dawniej); oczywidcie jesli
ktokolwiek z nich zdecyduje si¢ wréci¢ do
naszych matematycznych tamigtéwek,
jego nazwisko automatycznie wréci na
liste. Serdecznie zapraszamy!

908. Niech a bedzie jedna z szukanych liczb; jasne,
ze a > 1. Rozpatrzmy przypadek, gdy a — 1 ma dzielnik
pierwszy p > 2.

Wezmy dowolna liczbe ¢ € N, dla ktérej kongruencja
2? = ¢ (mod p) nie ma rozwiazania (wiadomo,
ze niereszty kwadratowe istnieja). Niech
n=(Lp+ 1))3(q —1). W my$l warunku zadania istnieje
liczba j € N taka, ze %j(jJrl) =1l4a+...+a L
Skoro a =1, zatem % j(j +1) =n= (%)3(q —1) (mod p)
i po pomnozeniu przez 8:

HE+D=q-1, (25 + 1)
wbrew wczeéniejszemu wyborowi liczby g. Rozpatrywany
przypadek okazal sie niemozliwy.

czyli ¢ = (mod p),

Pozostaje przypadek, gdy a = 2° + 1 dla pewnego
s € NU{0}. Warunek zadania (dla n = 3) zada,
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. n+1
, czyli @y

k # 1. To znaczy, ze wyrazenie x},
wszystkich k € {1,...,m}. Oznaczmy ja przez C. Liczby 1, ..
réznymi pierwiastkami wielomianu W (z) = 2"*t! — Az — C. Jego pochodna
W'(z) = (n+1)2™ — A ma zatem co najmniej m — 1 réznych pierwiastkéw.

_ wlnﬂ — Az, dla kazdej pary k,l € {1,...,m},

1 _ Az, ma jednakows wartosé dla
., Tm 5§ Wiec

— A.Z‘k

Gdy n jest liczba parzysta, wielomian (n + 1)z — A moze mieé co najwyzej dwa
pierwiastki; stad oszacowanie m < 3. Warto$¢ m = 3 jest osiggalna (na wiele
sposobdéw); na przyklad tréjka liczb (z1,xe, x3) = (—1,0, 1) spelnia postawiony
warunek (dla kazdego parzystego n).

Gdy n jest liczba nieparzysta, wielomian (n + 1)z™ — A moze mieé co najwyzej
jeden pierwiastek, wiec m < 2; a dla m = 2 warunek zadania niczego nie zada.
Stad odpowiedz: szukane maksimum to m = 3 oraz m = 2 odpowiednio dla
parzystych i nieparzystych n.

by 1+a+a?=1;(j+1) dla pewnego j € N. Po
podstawieniu a = 2° + 1 i prostym przeksztalceniu
dostajemy réwnanie

22 +3) = (j - 2)(j +3).
Czynniki po prawej stronie sa réznej parzystosci,
wiec jeden z nich dzieli sie przez 25+ stad (wigkszy
z nich) j + 3 > 2571, Drugi jest wtedy dzielnikiem
liczby 2° 4 3; stad (mniejszy) j — 2 < 2° + 3. Uzyskane
dwustronne oszacowanie 257! — 3 < j < 2° + 5 pociaga
nieréwnoéé 2° < 8. Dla s = 0, 1, 2 napisane rOwnanie nie
jest spelnione dla zadnego j. To znaczy, ze s = 3, czyli
a=29. Dla a =9 i dowolnego n suma dana w zadaniu
L4+9+... 49" =1 (3" —1)(3" + 1) jest liczby
postaci 3 j(j + 1) dla j = $(3" — 1). Stad odpowiedz:
a =9 jest jedyna liczba spelniajaca postawiony warunek.
(Pomyst rozwigzania: Marcin Massalski).



Podsumowanie ligi zadaniowej Klubu 44 M w roku szkolnym 2024/2025

Weterani Klubu 44 M (w kolejnosci
uzyskiwania statusu Weterana):

J. Janowicz (8), P. Kaminski (5),

M. Galecki (5), J. Uryga (4),

A. Pawlowski (4), D. Sowizdrzal,

T. Rawlik (6), M. Mazur, A. Bonk,

K. Serbin, J. Ciach (5), M. Prauza (4),
P. Kumor (16), P. Gadzinski (7),

K. Jedziniak, J. Olszewski (25),

L. Skrzypek (4), H. Kornacki,

T. Wietecha (15), T. Jézefczyk,

J. Witkowski (5), W. Bednorz,

B. Dyda (5), M. Peczarski,

M. Adamaszek (9), P. Kubit (8),

J. Cisto (18), W. Bednarek (10),

D. Kurpiel, P. Najman (9), M. Kieza (4),
M. Kasperski (6), K. Dorobisz,

A. Woryna (4), T. Tkocz, Z. Skalik (4),
A. Dzedzej, M. Miodek, M. Malogrosz (4),
K. Kaminski, J. Fiett (4),

M. Spychata (6), A. Kurach (4),

S. Bednarek, M. Pater (4), L. Merta
(jesli uczestnik przekroczyl bariere

44 punktéw wiecej niz trzy razy,
sygnalizuje to liczba w nawiasie).
Pozostali cztonkowie Klubu 44 M
(alfabetycznie):

»dwukrotni”: Z. Bartold, A. Czornik,

A. Daniluk, Z. Galias, L. Garncarek,

J. Garnek, A. Idzik, P. Jedrzejewicz,

G. Karpowicz, H. Kasprzak,

T. Komorowski, Z. Koza, J. Lazuka,

J. Malopolski, K. Maziarz, J. Mikuta,

E. Orzechowski, R. Pagacz, K. Patkowski,
K. Piéro, F. S. Sikorski, J. Siwy,

R. Stowik, S. Solecki, T. Warszawski,

P. Wisniewski, G. Zakrzewski, K. Zygan,
B. Zmija;

»jednokrotni”: R. M. Ayoush,

T. Bieganski, W. Boratynski, P. Burdzy,
T. Choczewski, M. Czerniakowska,

P. Duch, P. Figurny, M. Fiszer,

L. Gasinski, A. Gluza, T. Grzesiak,

K. Hryniewiecki, K. Jachacy,

M. Jastrzebski, P. Jadniewski, A. J6zwik,
J. Klisowski, J. Kraszewski,

A. Krzysztofowicz, R. Kujawa, T. Kulpa,
A. Langer, R. Latatla, P. Lipinski,

P. Lizak, P. Labedzki, M. Lupiezowiec,
W. Maciak, J. Mandziuk, B. Marczak,
M. Marczak, M. Matlega,

K. Matuszewski, R. Mazurek,

H. Mikotajczak, M. Mikucki, J. Milczarek,
R. Mitraszewski, K. Morawski,

M. Mostowski, W. Nadara, W. Olszewski,
R. Pikuta, B. Piotrowska, W. Pompe,

N. Porwol, M. Roman, M. Rotkiewicz,
A. Ruszel, Z. Sewartowski, A. Smolczyk,
P. Sobczak, Z. Surduka, T. Szymeczyk,
W. Szymczyk, W. Tobis, K. Trautman,

P. Wach, M. Warmuz, J. Wegrecki,

G. Wiaczkowski, K. Witek, A. Wyrwa,
M. Zajac, Z. Zaus, K. Zawistawski,

P. Zmijewski.

Jak co roku — oméwienie wybranych zadan, niekoniecznie o parametrach: wspdtczynnik
trudnosci (WT) wysoki, liczba przystanych rozwigzarn (LPR) niewielka. Grono
uczestnikéw, ktoérzy regularnie przysytaja prace, jest niezwykle stabilne — i sa to

w wigkszoéci prace zdecydowanie dobre. Wplyw na wartosci wspomnianych parametréw
jest oczywisty. Jedyne dwa zadania z wartoécia WT okolo 3 (ciekawostka: oba
geometryczne) zawdzieczaja 6w wspdlezynnik zadaniom im towarzyszacym, moze
nadmiernie tatwym.

W e-wydaniu, jak zwykle, znajdziemy niektére prace uczestnikéw oraz ciekawe
komentarze (zakladka: ,Zalacznik do elektronicznego oméwienia ligi matematyczne;j”).
* * k

Zadanie 887. [A,B€R: Ju,v,w €C: |u|=v|=|w|=1=uww, u+v+w= A+ Bi;
min A =?] (WT = 1,69; LPR = 16). Zadanie nietrudne, sporo dobrych rozwiagzan. Ale —
uwaga — przy zliczaniu LPR nie zostaly uwzglednione prace, w ktérych zagadnienie
zostalo sprowadzone do szukania minimalnej wartosci pewnej funkcji dwéch zmiennych
rzeczywistych przez obliczenie pochodnych czastkowych i przyréwnanie ich (obu) do
zera (czyli wyznaczenie punktdw krytycznych badanej funkcji) — i pochopna konkluzja,
ze najmniejsza z wartoéci w znalezionych punktach to szukane minimum funkcji.

W sytuacjach, jakie wynikly w tym zadaniu, uzasadnienie poprawnosci konkluzji jest
tatwe — niemniej niezbedne; jego brak to znaczaca usterka.

[Dygresja — pytanie ukazujace potrzebe ostroznosci przy podobnych rozumowaniach.
Niech np. D = {(z,y): = >0, y > 0}. Zalézmy, ze funkcja f: D — R jest ciagla

w calym zbiorze D, ma ciggle pochodne czgstkowe w punktach wewnetrznych,

a najmniejsza z jej wartoéci w punktach krytycznych wynosi m; ponadto w punktach
brzegu zbioru D przyjmuje tylko wartosci > m oraz jej wartosci wzdtuz kazdej
pOlprostej (zawartej w D) daza do granicy > m. Czy stad wynika, ze m jest jej
najmniejszg wartoscig? Jako odpowiedZ na to pytanie niech postuzy przyktad:
fl,y) =a° — 2’y — 2’y + 42 ]

Zadanie 893. [A, B,C, D, E (kolejno) na prostej, CA=CE, CB=CD; K,L po
jednej jej stronie; katy ostre: x KAB + xKBA+ <xLDFE + <xLED = 180°;
KBNLD={N}, AKNEL={M}; MN L AE; odcinek M N przecina KL

= CK =CL] (WT = 3,25; LPR = 9). Wigkszo$¢ rozwigzan (M. Adamaszek,

A. Kurach, J. Olszewski, M. Pater, M. Znamierowski), podobnie jak firmowe,
polegala na wprowadzeniu punktu uzupelniajacego tréjkat AKE (lub ALE) do
réwnolegltoboku. Marek Spychatla — nieco inaczej, oryginalnie: z zalozen wynikaja
réwnosci AB = DE, xAKB + ¥xDLE = 180°, a z nich wnioski: czworokat K M LN
jest cykliczny; okregi (AKB) i (DLE) maja réwne promienie (tw. sinuséw); ich
srodki U i V leza po przeciwnych stronach prostej AFE; trojkaty AUB i DV E sa
przystajace. Symetria wzgledem punktu C, ktéra zamienia punkty A i E oraz
punkty B i D, zamienia takze punkty U i V. Tak wiec C jest srodkiem odcinka UV'.
Oznaczmy: X KMN = a, xLMN = 3; skoro MN | AB, zatem xBAK = 90° — «,
skad xUKN = 1(180° — 2xBAK) = o. Dalej ¥ NKL = j3 (okrag KLMN);

UKL = xUKN + xNKL = a+ . Analogicznie ¥V LK = 8 + a. Wobec tego
czworokat UKLV jest trapezem réwnoramiennym. Punkt C' jest érodkiem jego
podstawy UV'; stad teza: CK = CL.

Dos¢ podobnie, zgrabnie: Barbara Mroczek (— e-wydanie). Zadanie 896. [A, = %Ziil + dlan € N = cigg (An)
Ponadto dwa rozwigzania rachunkowe (T. Wietecha, maleje] (WT = 1,65; LPR = 21). Badanie ciaggu o wyrazach

P. Wiéniewski).

An = LH(2"), gdzie H(N) = Z;\;l %, wrecz zaprasza do
wejscia w jezyk analizy (logarytmy, pochodne, catki) — i tak

wyglada wiekszo$é rozwiazan (w tym i ,firméwka”...).
A nie lepiej na poziomie gimnazjum? Popatrzmy (Janusz
Olszewski):

HR') —HQ" ) =5i5+... + 57 <1

(bo suma po prawej stronie ma 2" sktadnikéw, kazdy < 27").

Podstawiajac H(2") = nA,, dostajemy nieréwnosé

0>n+1)Ant1 —nAn—1=(n+1)(Ant1 —1) —n(4n — 1) >
> n(Ang1r — 1) —n(4, — 1),

czyli Any1 — 1 < A, — 1: tezal

Autor zadania (Jerzy Cislo) tez zaproponowal rozwiazanie
w podobnym stylu; i nikt ponadto sposréd uczestnikéw.
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Odnotujmy jeszcze podejscie ,erudycyjne”, wykorzystujace
twierdzenie Younga:

— 1
(Y) H(n)77+lnn+m,
(v — stata Eulera); aby uzyskaé teze zadania

(n+1)H(2™) > nH(2""), wystarczy pokazaé, ze

(n+1)(y + 2" + 5aggy) > n(y + 2" + 5507 ),

czyli ze 2v > 53571 — z’il—trll , a to oczywiste, bo

prawa strona ujemna. Jednak twierdzenie (Y) jest

malo znane i nielatwo dostepne (Google wyrzuca

kilka innych twierdzeri Younga). Tomasz Wietecha
znalazt w pracy arxiv.org/pdf/2204.09226 wynik:

H(n) :fy—&—lnn—ki — ﬁ—ken, 0<en < ﬁ, z ktérego
nieréwnos$é dwustronna (Y') daje sie niezbyt trudno
wyprowadzié¢. Jeszcze jeden z uczestnikow w ten sam sposob
wyprowadzil tez¢ zadania z nieréwnosci (Y), jednak nie
podajac ani jej dowodu, ani zadnego odsytacza.

0<6,<1

Zadanie 897. [ABCD — czworokat wypukly; obwéd p,
przekatne m,n; ABCE — réwnoleglobok = DFE < p —m — n|
(WT =297; LPR = 10). Traktujac punkty jako liczby
zespolone i oznaczajac A— B =z, B—C=y,C—D =z,
rozwigzanie firmowe sprowadzalo teze zadania do nieréwnoséci
lzl + [yl + |zl + [z +y+ 2| 2 |z +y| + |y + 2[ + |2 + 2]
(dalej dajac jej dowdd). Redaktor Ligi nie miat $wiadomosci
— jaka mieli liczni uczestnicy — ze ta nieréwnosé jest dosé
dobrze znana jako Hlawka inequality (lub: Hornisch—Hlawka)
i zachodzi nie tylko dla liczb z,y, z € C, ale dla dowolnych
wektorow w przestrzeni liniowej unormowanej, z norma
okreslong przez iloczyn skalarny. Jak wielokrotnie bywato,
popis erudycji dat Piotr Kumor; calos¢ jego pracy
w e-wydaniu — znajdziemy tam obszerne rozwazania,

odsytacze do literatury (nawet reprodukcje fragmentéw prac),
dyskusje przypadkéw réwnoécei, kwestie istotnosci zatozen

(w réznych wariantach twierdzenia) itp. Janusz Olszewski
(— e-wydanie) przystal trzy sposoby, w tym odsytacz do
Hlawki (z komentarzem).

Zadanie 900. [f1, f2, f3, fa — wielomiany rzeczywiste;
N<fo<fa<faw[0,1]; o< fa< fi < fzw[-1,0] =
fi=fo=fs = fa] WT =1,56; LPR = 16). Znéw: podejscie
typowe — przez poréwnanie relacji asymptotycznych (przy 0)
funkcji f; — ustepowalo prostota wykorzystaniu zwyklej
szkolnej algebry: wyrazy wolne a; = f;(0) spelniaja warunki
a1 < a2 <az <aqoraz az < aq < a1 < az, wiec sg rowne
(oznaczmy ich wspdlna warto$é przez a); zatem istnieja
wielomiany g; takie, ze fi(z) = a + zg:;(x) (1 = 1,2,3,4);

w przedziale (0, 1] spelniajg one nieréwnosci takie jak
funkcje f;, za§ w [—1,0) — przeciwne; stad ich wyrazy

wolne b; = ¢;(0) spetniaja warunki b1 < ba < bz < by oraz

bs < b1 < ba < b2, wige sa réwne (wspdlna wartosé b);

i dalej: istnieja wielomiany h; takie, ze g;(z) = b+ xh;(z),
spelniajace w przedziale (0, 1] nieréwnosci takie jak g;, za$
w [—1,0) przeciwne, czyli takie jak f;, wobec czego wartosci
¢; = h;(0) spelniaja warunki takie jak a;, wigc znéw sa réwne;
pozostaje zauwazy¢, ze b; to wpdtczynniki wielomianéw f;
przy x; dalej: ¢; to wpbtezynniki f; przy x?; kontynuujac to
rozumowanie (indukcja), wykazujemy, ze w wielomianach f;
wspoélezynniki przy zmiennej w jednakowej potedze s réwne,
co oznacza, ze te wielomiany sg réwne.

Obie metody byty reprezentowane w przystanych pracach;

ta pierwsza (przez asymptotyke) bardziej licznie; ciezko
doktadnie ocenié, bo niektére rozwigzania zawieraty elementy
jednej i drugiej metody.

Zadanie 902. [Dla n € N: w(n) = max{w: 107%n! € N}, 107*™n!l =: f(n) =

VYm e N: f(5™)=2" (mod5)] (WT =1,90; LPR = 18). Przez do$¢ dlugi czas nie
mogliSmy sie zdecydowad, czy chcemy wlaczy¢ to zadanie do Ligi. Przeciez ostatnia
niezerowa cyfra liczby n! to hasto czesto spotykane — musi byé w sieci. I jest — tylko ze
wszystko, co wyskakuje, to proste przyktady, dla konkretnych wartoéci n — nie ogdlne
twierdzenie, ktére byloby tu przydatne; trzeba poszperaé¢ glebiej. Pawel Kubit, jako
jedyny, dotart do formuty

L(n!) = LD(2°L(a!) L(b))

dlan =5a+b,

w ktérej LD(m) to ostatnia cyfra liczby m; L(n!) to LD(f(n)) (gdzie f to funkcja

z zadania). Podal dwa Zrédla, z ktérych jedno nie zawiera dowodu (tylko przyklady),
za$ drugie www.geeksforgeeks.org/dsa/last-non-zero-digit-factorial odsyla do
kolejnego materiatu, w ktérym faktycznie jest dowdd (formuly nawet bardziej ogélnej),
wszelako ciezki do przebrniecia — te Sciezke (wraz z wyjasnieniem, jak owa formula
prowadzi do tezy naszego zadania) proponujemy entuzjastom. Jednak prosciej jest
zwyczajnie zrobi¢ zadanie — niezbyt przeciez trudne (jak wskazuje warto$é¢ LPR).

Wszyscy pozostali uczestnicy przystali prace réznigce sie w detalach, ale bazujace na
jednej koncepcji, by w iloczynie definiujagcym n! wydzieli¢ wszystkie potegi piatki,

a pozostale czynniki pogrupowaé w bloki czteroelementowe. Jedyna trudnos$é polegata
na tym, jak tu zgrabnie zapisa¢ rozumowanie, ktére w mysli jawi si¢ jako catkiem
jasne. Szczyt zwiezlosci, przy jednoczesnej klarownosci przekazu, osiagnat Jerzy Cislo

(— e-wydanie)!

Kazdy moze nadsylaé rozwigzania zadan z numeru n w terminie
do konca miesigca n + 2. Szkice rozwigzan zamieszczamy

w numerze n + 4. Mozna nadsyla¢ rozwigzania czterech, trzech,
dwoéch lub jednego zadania (kazde na oddzielnej kartce), mozna to
robié¢ co miesigc lub z dowolnymi przerwami. Rozwigzania zadan

z matematyki i z fizyki nalezy przesyla¢ w oddzielnych kopertach,
umieszczajac na kopercie dopisek: Klub 44 M lub Klub 44 F.
Mozna je przesylaé¢ réwniez poczta elektroniczng pod adresem
delta@mimuw.edu.pl (preferujemy pliki pdf). Oceniamy zadania

w skali od 0 do 1 z dokladnoscig do 0,1. Oceng mnozymy przez
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wspolezynnik trudnosci danego zadania: WT = 4 — 3S/N, przy czym
S oznacza sume ocen za rozwigzania tego zadania, a N — liczbe

oséb, ktére nadestaly rozwigzanie choéby jednego zadania z danego
numeru w danej konkurencji (M lub F) — i tyle punktéw otrzymuje
nadsytajacy. Po zgromadzeniu 44 punktéw, w dowolnym czasie

i w ktérejkolwiek z dwédch konkurencji (M lub F), zostaje on czlonkiem
Klubu 44, a nadwyzka punktéw jest zaliczana do ponownego udziatu.
Trzykrotne czlonkostwo — to tytul Weterana. Szczegélowy regulamin
zostal wydrukowany w numerze 2/2002 oraz znajduje si¢ na stronie
deltami.edu.pl.



Prosto z nieba: Sze$¢ miliardéw ton na sekunde

Zyjemy w zlotej erze astronomii. Serio! Czasami trudno
nam uwierzy¢, ze dopiero 30 lat temu odkryliSmy
pierwsza planete krazaca wokdl gwiazdy podobnej

do Storica. W 2022 roku mieliémy ich juz 5 tysiecy,

a w zeszlym roku oficjalna liczba potwierdzonych
obserwacji planet pozastonecznych osiagneta 6 tysiecy,
podczas gdy kolejne tysiace kandydatéw czekaja

w kolejce na obserwacje. Kazda odkryta planeta pozwala
naukowcom dowiedzieé¢ si¢ wiecej o warunkach, w jakich
powstaja, oraz o tym, gdzie ich szukac.

Oczywiscie w tym czasie nie obylo sie bez niespodzianek.
Odkrylismy obiekty, ktére odbiegaja od naszego
standardowego rozumienia tego, czym jest planeta

i gdzie powinna sie znajdowaé¢. Na przyktad odkryliémy
planety swobodne, czyli takie, ktére przemierzaja
przestrzen kosmiczna samotnie, nie orbitujac wokdt

zadnej gwiazdy. Naukowcy szacuja, ze w naszej
Galaktyce takich planet moze by¢ okolo dwa razy wiecej
niz gwiazd! Ich pochodzenie wciaz pozostaje zagadka:
czy sa to obiekty, ktére powstaly podobnie jak gwiazdy,
poprzez zapadniecie sie chmur pytu i gazu? Czy tez sa
to planety wyrzucone ze swoich rodzimych ukltadow
gwiazdowych?

W tym artykule uzywam okreslenia swobodna planeta. Jest to

luzne tlumaczenie wielu angielskich nazw odnoszacych sie do tych
obiektéw (np. rouge planet, free floating planet etc.). Nazwa

stosowana w literaturze naukowej to swobodnie dryfujacy obiekt

o masie planetarnej (ang. Free-floating Planetary-mass Object).
. . 2

O swobodnych, bezgwiezdnych planetach pisalam w A3,.

Mozliwe, ze wlasnie odrobing zblizyliémy sie do
odpowiedzi na to pytanie dzieki swobodnej planecie
o uroczej nazwie Cha 1107-7626. Dla tej konkretnej
planety odpowiedz brzmi: powstaje jak gwiazda.

Wizja artystyczna planety Cha 1107-7626. Znajduje si¢ ona w odlegtosci okoto 620 lat $wietlnych
od Ziemi, jest okolo 5-10 razy masywniejsza od Jowisza i nie orbituje wokél zadnej gwiazdy.
Zrédto: ESO/L. Calcada/M. Kornmesser

Cha 1107-7626 to planeta, ktérg obserwujemy

w momencie formowania si¢ jej wewnatrz chmury

gazu i pytu. Otaczajacy planete material nieustannie
opada na nia pod wplywem sily grawitacji (w procesie
zwanym akrecja). W rezultacie woké! planety powstaje
dysk materii, ktory wirujac, nagrzewa sie do wysokich
temperatur, i w efekcie emituje $wiatto. To $wiatlo
jesteSmy w stanie rejestrowacé za pomoca teleskopdow.
W przypadku tej planety jednak zaobserwowano cos
zaskakujacego — szybko$é opadania materii na planete
nie jest stala, ale zwieksza sie w zastraszajacym tempie.
W sierpniu 2025 roku zmierzono, ze planeta zasysa
otaczajaca ja materi¢ z predkoscia szeSciu miliardéw
ton na sekunde! Okolo osiem razy szybciej niz kilka
miesiecy wczeéniej. Jest to najsilniejszy epizod akrecji,
jaki kiedykolwiek odnotowano dla obiektu o masie
planetarne;j.

Obserwacje przeprowadzono za pomoca spektrografu X-shooter
zainstalowanego na Bardzo Duzm Teleskopie (Very Large telescope,
VLT) nalezacym do Europejskiego Obserwatorium Potudniowego
(European Southern Observatory, ESO), znajdujacym si¢ na pustyni
Atacama w Chile. Zesp6l wykorzystal rowniez dane z teleskopu

kosmicznego Jamesa Webba, obstugiwanego przez ager
Stanéw Zjednoczonych, Europy i Kanady, oraz dane archiwalne ze
spektrografu SINFONI, zainstalowanego na teleskopie VLT nalezgcym
do ESO.

je kosmiczne

Granica pomiedzy sposobem, w jaki powstaja gwiazdy,
oraz tym, jak powstaje swobodna planeta Cha 1107-7626,
zaciera sie jeszcze bardziej, gdy przyjrzymy sie
doktadniej zmianom tempa opadania materii na
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planete w czasie. Poréwnujac $wiatlto emitowane

przed i podczas dramatycznego wzrostu tempa akrecji,
astronomowie zebrali wskazéwki dotyczace natury tego
procesu. Wyniki wskazuja, ze za napedzanie tempa
akrecji jest odpowiedzialne zaskakujaco silne pole
magnetyczne planety — zjawisko wczesniej obserwowane
tylko w przypadku gwiazd. Ale to nie wszystko, sktad
chemiczny materii wokél planety zmienia sie w czasie.
W dysku akrecyjnym wykryto na przykitad pare wodna,
ktérej tam nie bylo kilka miesiecy wczesniej. I tutaj znow
mozna si¢ domysli¢, ze takie zjawisko zaobserwowano do
tej pory tylko w czasie powstawania gwiazd, ale nigdy
dla zadnej powstajacej planety.

Jedno mozna powiedzie¢ na pewno, Cha 1107-7626
zaintrygowala naukowcéw. Sposéb, w jaki powstaje,
bardzo rézni sie¢ od tego, jak powstala nasza wtasna
planeta. Jak to ujela Amelia Bayo, wspétautorka
publikacji opisujacej badania: ,Pomyst, ze obiekt
planetarny moze zachowywaé sie jak gwiazda, budzi
podziw i sklania nas do zastanowienia sig, jak moga
wygladaé¢ $wiaty poza naszym witasnym”. No céz,
pozostaje nam tylko podziwia¢ dalej!

Napisane na podstawie publikacji V. Almendros-Abad et al. “Discovery
of an Accretion Burst in a Free-Floating Planetary-Mass Object”, The
Astrophysical Journal Letters 992 L2 (202F

Anna DURKALEC

Zaktad Astrofizyki, Departament Badan Podstawowych,
Narodowe Centrum Badan Jadrowych



/Niebo w lutym

Luty jest najkrétszym miesiacem roku, Stonice szybko jednak wspina si¢ na
niebie i przez caly miesiac zwiekszy ono wysoko$é gérowania o ponad 9°.
Wyraznie wzroénie tez jego czas przebywania nad widnokregiem, do prawie

11 godzin.

Podobnie jak w styczniu, teraz tez Ksiezyc zdominuje poczatek miesiaca. Pelnia
Srebrnego Globu przypada w nocy z 1 na 2 lutego na tle gwiazdozbioru Raka,
4° na wschéd od jasnej gromady otwartej gwiazd M44. Oczywiscie zginie

ona w blasku Ksiezyca, ale jesli ktos jeszcze nie umie jej odnalezé, to warto
zapamietaé polozenie Ksiezyca tej nocy wzgledem Regulusa w Lwie z jednej
strony oraz Kastorem i Polluksem w BliZnietach z drugiej i powréci¢ w ten

rejon nieba za tydzien. M44 znajduje sie prawie w polowie odlegtosci miedzy
wspomnianymi gwiazdami, nieco blizej Blizniat i na ciemnym niebie widoczna
jest goltym okiem jako mgietka, a w lornetce rozpada sie na pojedyncze gwiazdy.

Nastepnej nocy Ksiezyc zawita do Lwa, wschodzac

5° na péinocny zachéd od Regulusa, najjasniejszej
gwiazdy tej konstelacji. Okolo godziny 5 dystans miedzy
tymi cialami niebieskimi zmniejszy sie¢ do 0,5°. W nocy
z 6 na 7 lutego Srebrny Glob w fazie 72% zblizy sie do
Spiki, najjasniejszej gwiazdy Panny, zmniejszajac nad
ranem dystans don do 3°. Dwie noce pdzZniej natomiast
nastapi ostatnia kwadra Ksiezyca na tle gwiazdozbioru
Wagi 6° na poludnie od Zuben Elgenubi, drugiej co do
jasnosci gwiazdy tej konstelacji, cho¢ na mapach nieba
oznaczana jest grecka litera a.

Przelom zimy i wiosny oznacza niskie nachylenie
ekliptyki do porannego horyzontu i wysokie do
wieczornego. Wplynie to mocno na widocznosé
naturalnego satelity Ziemi po ostatniej kwadrze,
szczegblnie ze przebywa on wtedy na poludnie od
ekliptyki, co dodatkowo obniza jego wysokos¢ nad
widnokregiem o kilka stopni. Warto tutaj wspomnieé¢
o spotkaniu Ksiezyca w fazie 35% z Antaresem,
najjasniejszg gwiazda Skorpiona. 11 lutego oba ciala
niebieskie pojawig si¢ na niebosklonie okoto godziny 3:30
w odlegtosci 1,5° od siebie.

Néw Ksiezyca przypada 17 lutego i zostanie on
okraszony obraczkowym zaé¢mieniem Stonca, widocznym
niestety jedynie z Antarktydy. Po nowiu Srebrny

Glob przeniesie sie na niebo wieczorne, gdzie bardzo
cienki sierp Ksiezyca mozna probowaé dostrzec juz

18 lutego. Pét godziny po zachodzie Storica zajmie on
pozycje na wysokosci 7°, prezentujac tarcze w fazie
niecalych 2%. Planeta Merkury pokaze si¢ 4° nad nim,
w podobnej odleglosci, ale pod nim zorze wieczorna
przebije planeta Wenus. Oczywiécie Wenus jest duzo
jasniejsza, jej blask wyniesie —3,9™, Merkury natomiast
$wieci blaskiem —0,6™.

Pierwsza planeta od Storica maksymalng elongacje nieco
ponad 18° osiagnie 19 lutego i zacznie pojawiaé sie na
lewo od punktu W widnokregu od drugiego tygodnia
miesiaca. W dniu maksymalnej elongacji, okoto godziny 18
planeta zajmie pozycje na wysokosci 7°. Jak zawsze
podczas widocznosci wieczornej planety wewnetrzne daza
od koniunkcji gornej do dolnej, a zatem ich tarcze rosna,
a fazy maleja. W przypadku Merkurego spada rowniez
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jego jasnosé. Przez trzy tygodnie tarcza Merkurego
urosnie od 5" do 10", faza jego tarczy spadnie od 88% do
12%, blask natomiast zmniejszy sie od —1" do +1,9™.

Druga z planet wewnetrznych mozna prébowaé dostrzec
nisko nad wspomniang wczesniej czesciag widnokregu

od polowy lutego. Do konca miesiaca w momencie
zachodu Slonca wzniesie si¢ ona na wysokosé¢ 10°. Od
marca do czerwca planeta rozgodci sie jednak na niebie
wieczornym. W lutym Wenus jest daleko od nas i jej
wyglad prawie sie nie zmienia. Planeta swieci blaskiem
—3,9™, przy Srednicy tarczy 10" i fazie 88%. Do konca
miesiagca dystans miedzy planetami zmniejszy sie od 8°
do 4°.

19 lutego Ksiezyc zwiekszy faze do 5%, zblizajac sie

na 5° do planety Saturn, ktéra $wieci blaskiem +1™,
przy $rednicy tarczy 16”. Warunki widoczno$ci Saturna
szybko sie pogarszaja, i na poczatku marca zginie on

w zorzy wieczornej. Niskie polozenie nad widnokregiem
sprawia, ze obserwacje teleskopowe sa trudne i pozostaje
tylko obserwacja gotym okiem.

24 dnia miesiaca przypada I kwadra Srebrnego Globu.
Do tego czasu zblizy si¢ on do Plejad w Byku. Tym
razem Europa nie ma szczedcia i do ich zakrycia dojdzie,
gdy wraz z Ksiezycem sa one u nas pod horyzontem.

24 lutego oba ciata zajda tuz po pdéinocy, gdy przedzieli
je dystans 2°. Wieczorem znajda sie one wysoko na
niebie, w okolicach potudnika lokalnego, ale juz ponad 8°
od siebie.

W dniach 26 i 27 lutego Ksiezyc zwiekszy faze do
okoto 80% i zajmie pozycje najpierw na pograniczu
gwiazdozbiorow Blizniat i Woznicy, a nastepnie we
wschodniej czesci Blizniat. Pierwszej z wymienionych
nocy Ksiezyc przed swoim zachodem zmniejszy dystans
do Jowisza do ponizej 5°. Drugiej nocy natomiast
Ksiezyc zblizy sie na 3° do Polluksa, najjasniejszej
gwiazdy Blizniat oraz zakryje $wiecaca blaskiem +3,6™
gwiazde k Gem. Gwiazda zniknie za ksigzycowa tarcza
okolo godziny 23 i pojawi sie ponownie godzine pézniej.
Jowisz powoli stabnie po styczniowej opozycji i do kotica
miesiaca jego blask spadnie do —2,4™ przy Srednicy
tarczy 43"

Ariel MAJCHER



Rozwigzania zadan ze strony 5

& Rozwigzanie zadania M 1843.
Jedli n jest liczba parzysta, tj. n = 2k, to pary

(1,4k), (2,4k—1), ..., (2k,2k+1)
spelniaja warunki zadania, gdyz
(1+4k)- 24+ @k —1))-...- 2k + 2k + 1)) = ((4k + 1)F)2.

Jesli n jest liczba nieparzysta, tj. n = 2k + 1, to uzyjemy indukcji
matematycznej. Dla n = 3 mamy
(145)(2+4)(3+6) = 182
Zalbézmy zatem, ze teza zachodzi dla n — 2 = 2k — 1 i polaczyliSmy
juz w pary liczby 1, 2, ..., 4k — 2 tak, ze iloczyn sum w parach jest
réwny m? dla pewnej liczby calkowitej m. Wtedy dokladajac pary
(4k — 1,4k + 2), (4k,4k +1),
dostajemy:
(4k — 1+ (4k +2)) - (4k + (4k + 1)) - m? = ((8k + 1)m)>.

& Rozwigzanie zadania M 1844.
Odpowiedz: 40.

Udowodnimy, ze na poczatku w kazdym rzedzie lub kolumnie
znajduja sie co najwyzej dwie mrowki, ktorych pierwszy ruch
odbywa sie¢ w tym rzedzie lub kolumnie. Zatem calkowita liczba
mréwek na tablicy wynosi maksymalnie 2-10 4+ 2 - 10 = 40.

Rozpatrzmy standardowe kolorowanie szachowe naszej tablicy.
Zalézmy, ze po pewnym rzedzie lub kolumnie poruszaja sie
3 mréwki. Na podstawie

v |- -« |y zasady szufladkowej Dirichleta
S vy «| ¢ dwie z nich muszg zajmowacé
- Y I - pola tego samego koloru.

g V=< Jednakze wtedy te mrowki

muszg zajaé to samo pole na

i e dtugo przed uptywem godziny!

-4 b |- Rysunek obok pokazuje
- y } - spelniajacy warunki zadania
Iy e Ny <1 sposéb rozmieszczenia

e <4 40 mréwek wraz z kierunkami

ich wedréwek.

i Rozwigzanie zadania M 1845.
Odpowiedz: Tak.

Niech ABCD bedzie czworoscianem foremnym. Rozwazmy trzy
plaszczyzny:

¥1: réwnolegta do DAB, w odleglosci 3 od niej i po tej samej
stronie DAB co punkt C,

Yo: réwnolegta do DBC, w odleglosci 4 od niej i po tej samej
stronie DBC' co punkt A,

¥3: réwnolegta do DCA, w odlegtoéci v/21 od niej i po tej samej

stronie DC'A co punkt B.

Niech O bedzie punktem przecigcia sie¢ plaszczyzn 31, Yo i X3.
Rozpatrzmy sfere €2 o srodku w punkcie O i promieniu 5. Wezmy
jeszcze punkty A’, B, C’ odpowiednio na pétprostych DA, DB, DC
tak, aby DA’ = DB’ = DC" i plaszczyzna A’ B'C’ byla styczna do Q.

Sfera ) przetnie plaszczyzne DA’B’ wzdluz okregu o promieniu
V52 — 32 = 4, plaszczyzne DB'C’ wzdtuz okregu o promieniu
V52 — 42 = 3, a plaszczyzne DC’ A’ wzdluz okregu o promieniu

V52 — V210 =2.

Przesuwamy teraz réwnolegle plaszczyzne A’B’C’ w kierunku D
az do momentu, w ktérym O € A’ B’C’. Widzimy, ze ) przecina
A’ B’'C" wzdtuz okregu, ktérego promiert moze by¢ dowolng liczba
z przedziatu (0, 5], w szczegdlnodci moze by¢ réwny 1.
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i Rozwigzanie zadania F 1137.

W sytuacji, gdy na odizolowanej sondzie uruchamiamy szpule
magnetofonu, ukitad pozostaje wolny od zewnetrznych momentéw.
Calkowity moment pedu wzgledem osi obrotu musi wiec

pozostaé staty. Jesli przed wiaczeniem wszystko spoczywa, to

po uruchomieniu szpuli calkowity moment pedu nadal réwny jest
zeru: moment pedu szpuli zostaje skompensowany przez przeciwny
moment pedu powolnego obrotu korpusu sondy.

Niech Is oznacza moment bezwtadnosci korpusu sondy wzgledem
danej osi, a I, moment bezwladnosci szpuli (traktowanej jak

jednorodny walec, I, = %mr2). Oznaczmy takze przez wy = 27 /T
predkosé katowsq szpuli, gdzie T jest jej okresem obrotu. Z zasady

zachowania momentu pedu otrzymujemy natychmiast:

1,
Isws + Iy wy =0 — ws:—I—rwr
S
W konsekwencji po czasie t kat obrotu sondy wynosi:
I, 2wt mr2 wt

I, T I T
Jesli o$ obrotu ma sktadowsa prostopadia do kierunku patrzenia
kamery, ten kat przeklada sie bezposrednio na ugiecie linii
celowania na niebie. Réwnowazne przesuniegcie liniowe srodka
tarczy Jowisza w rzucie na odlegto$é D to (w przyblizeniu dla
matlego kata)
Az =D Ap.

Po podstawieniu wartosci liczbowych otrzymujemy:
Ap =8,82-10"%rad = 0,0505° ~ 182",
Dla odlegloéci D = 5,7 - 105 km:
Az =D Ap ~ 500km .

Uwaga: Jezeli o$ obrotu pokrywa sie z osig optyczna kamery, obraz
jedynie obraca si¢ w kadrze — bez przesuniecia srodka tarczy.

i Rozwigzanie zadania F 1138.

Rozwazmy obraz interferencyjny powstaly przez fale odbite od
goérnej i dolnej powierzchni klina powietrznego. Fala odbita od
dolnej powierzchni ulega zmianie fazy o 7, podczas gdy fala
odbita od gérnej powierzchni nie. W miejscu, gdzie grubo$¢ klina
wynosi d, warunkiem na maksimum natezenia jest

2d = (m+ 3) A,
gdzie A jest dlugoscia fali w powietrzu, a m jest liczba catkowita.

Zatem
(2m + 1)\

4

d=

Z geometrii rysunku wynika, ze

d=R—\/R2 -2,
gdzie R jest promieniem krzywizny soczewki, a r jest promieniem
pierscienia Newtona. Zatem
(2m 4+ 1)
— -

R—+/R%2 —r2.
Skad otrzymujemy:

(@m+1)RA  (2m +1)2A2
r= - .
2 16

Jedli R jest duzo wigksze od dlugosci fali, pierwszy skladnik
dominuje nad drugim i

_/(@m+1)RA
T = T

Wartoéci liczbowe to: 71 ~ 1,44 mm, ro =~ 1,86 mm.
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Punkty izogonalnie sprzezone
Barttomiej BZDEGA

Przed przystapieniem do lektury warto zapoznac sie z trygonometrycznym
twierdzeniem Cevy, do czego znakomicie nadaje si¢ poprzedni kacik.

Uniwersytet im. A. Mickiewicza w Poznaniu

Rozwazmy kat wypukly AOB oraz punkty X i Y wewnatrz niego. Méwimy,
ze proste OX i OY sa izogonalnie sprzezone wzgledem tego kata, jesli
|xAO0X| = |xBOY| (lub réwnowaznie: |<AOY| = |[xBOX]|).

Twierdzenie 1. Rozwazmy sytuacje z pierwszego rysunku. Punkty X4 i Xp sa
rzutami prostokatnymi punktu X na ramiona kata AOB; analogicznie jest z Yy
i Y. Wowczas proste OX i OY sg izogonalnie sprzezone wzgledem kata AOB
wtedy i tylko wtedy, gdy na czworokacie X 4YaYpXp mozna opisaé okrag.

W takiej sytuacji $rodkiem wspomnianego okregu jest srodek odcinka XY

Dowdd. Na czworokatach OX 4 X Xp i OY,Y Y mozna opisaé okregi

(o $rednicach OX i OY'), wiec mamy nastepujacy ciag réwnowaznosci:

|xAOX| = |xBOY| & |5 XaXpX| = |xYBYaY| & |¥OXpX4| = |3x0Y4Y5| &
na czworokacie X 4Y4YpXp mozna opisa¢ okrag. Na koniec zaobserwujmy, ze
srodek odcinka XY lezy na symetralnych odcinkéw X Y4 i XpYg, poniewaz
XYY X i YpXpXY sa trapezami prostokatnymi. Z tego wnioskujemy, ze jest
to Srodek okregu opisanego na czworokacie X 4 XpYpYa.

Twierdzenie 2. Niech punkt T} bedzie wspolnym punktem czewian AP, BQ
i CRy, a punkty Ps, Q2, Ro sg wybrane w taki sposéb, by proste APy, BQs,

C Ry byly izogonalnie sprzezone z, odpowiednio, AP, BQ1, CR; w katach
BAC, CBA, ACB. Przy powyzszych zalozeniach odcinki AP, BQo, C R,
réwniez przecinaja sie w jednym punkcie (rysunek 2).

Dowdd. Oznaczmy miary katow trojkata ABC przy wierzchotkach A, B, C,
przez, odpowiednio, «, 8, 7. Niech ponadto (sa to katy zaznaczone
na rysunku 2):
a1 = |§:BAP1| = |{P2AC|,
B1 = [xCBQ1| = [xQ2BA|,
Y1 = |§:ACR1| = |9:RQCB|
oraz ag = o — a1 analogicznie B2 i vo. Skorzystamy z trygonometrycznego
twierdzenia Cevy. Dla czewian APy, BQ1, C Ry oraz, odpowiednio, dla czewian
AP, BQ2, C Ry otrzymujemy
sinqy sinf; siny sin fBs  sin-ys
sinas  sin By ' sinyy’ sina;  sin B1 ‘ sin~y;
Zwrbéémy uwage, ze powyzsze wzory pozostaja prawdziwe niezaleznie od wyboru
czewian AP, BQ1, C Ry wewnatrz tréjkata ABC. Poniewaz t1to = 1, mamy
t, =1 <ty =1, co koticzy dowod.

sin aip

W tej sytuacji punkty T i Th nazywamy izogonalnie sprzezonymi w tréjkacie
ABC'. Oto kilka stynnych par takich punktow: srodek okregu wpisanego ze soba,
$rodek okregu opisanego z ortocentrum, $rodek ciezkosci z punktem Lemoine’a,
punkt Gergonne’a z punktem Nagela, punkty Brocarda jeden z drugim.

Zadania

1. Wykazaé, ze punkty Ty i To sa sprzezone izogonalnie w tréjkacie ABC wtedy
i tylko wtedy, gdy rzuty prostokatne punktéow T; i 75 na boki tréjkata ABC
(lacznie 6 punktéw) leza na jednym okregu, ktérego srodek pokrywa sie ze
$rodkiem odcinka T775.

2. Znalez¢ zwiazek zadania 1 z okregiem dziewieciu punktdéw.

3. Dany jest tréjkat ABC, w ktérym | ABC| > 90°. Punkty P i @ leza na
symetralnej odcinka AB, wewnatrz kata ACB, przy czym |XACP| = |%xBCQ)|.
Dowies¢, ze [xPAC| + |%xQBC| = 180°. (Obdéz OM, 2004)

4. Na bokach trojkata ABC' zbudowano, po jego zewnetrznej stronie, prostokaty
ABDE, BCGF, CAHI. Udowodnié, ze symetralne odcinkéw DF, GI, HE
przecinaja sie w jednym punkcie. (Obéz OM, 2004)
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