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Pola i punkty kratowe Grzegorz ŁUKASZEWICZ*
W artykule Obliczenia pól i objętości – trzy metody geometryczne, ∆2

25, opisaliśmy* Instytut Matematyki Stosowanej
i Mechaniki UW

Carl Friedrich Gauss (1777–1855)

Rys. 1. Okrąg C(4) i okręgi C(4 ±
√

2
2 )

pomagające oszacować liczbę punktów
kratowych

r =
√
n N(n) N(n)/n
1 5 5
2 13 3,25
3 29 3,22
4 49 3,06
5 81 3,24
6 113 3,14
7 149 3,04
8 197 3,08
9 253 3,12

10 317 3,17
20 1257 3,14
30 2821 3,13

100 31417 3,1417
200 125629 3,1407
300 282697 3,1411

Rys. 2

r =
√
n N(n) N(n)/n ≈ π

400 502 625 3,14141
500 785 349 3,14139

1 000 3 141 549 3,141549
10 000 314 159 221 3,141592

100 000 31 415 939 281 3,141594
200 000 125 663 759 077 3,141594
Rys. 4

trzy geometryczne sposoby obliczania pól figur płaskich. Celem tego artykułu jest
pokazanie, jak można aproksymować pole koła o promieniu r =

√
n, gdzie n jest

liczbą naturalną, za pomocą zliczania punktów kratowych zawartych w tym kole
i na jego brzegu. Pokażemy także, że w przypadku wielokątów o wierzchołkach
w punktach kratowych znajomość liczby punktów kratowych w ich wnętrzach
i na ich brzegach wystarcza do dokładnego obliczenia pól tych wielokątów.

Obliczenia dla okręgu. Oznaczmy przez N(n) liczbę punktów kratowych
na i wewnątrz okręgu C(

√
n) o środku w początku układu współrzędnych

i promieniu r =
√

n (patrz rys. 1).

Jednym z pierwszych uczonych, którzy postawili pytanie o wartość N(n), był
Carl Friedrich Gauss. W roku 1837 napisał na ten temat artykuł. Podał w nim
swoje obliczenia dla naturalnych r w zakresie od 1 do 300, patrz tabela na
rysunku 2. Z tabeli możemy wywnioskować, że wartości N(n)

n dążą do liczby π,
gdy n rośnie nieograniczenie. Aby to pokazać, oszacujemy najpierw różnicę
|N(n) − πn|. Skoro N(n) jest równe sumie pól kwadratów, których środki leżą na
i wewnątrz okręgu C(

√
n), to jest jasne (patrz rys. 1), że

π

(√
n −

√
2

2

)2

⩽ N(n) ⩽ π

(√
n +

√
2

2

)2

,

skąd wynika, że

(1)
∣∣∣∣N(n)

n
− π

∣∣∣∣ ⩽ π

(√
2
n

+ 1
2n

)
.

Prawa strona ostatniej nierówności dąży do zera wraz z nieograniczonym
wzrostem n. Powyższą nierówność możemy odczytać jako∣∣∣∣N(n) − πn

πn

∣∣∣∣ ⩽
√

2
n

+ 1
2n

,

co oznacza, że wartość względna (w stosunku do pola koła o promieniu
√

n)
różnicy pomiędzy liczbą punktów kratowych w tym kole, razem z jego brzegiem,
a polem tego koła dąży do zera wraz ze wzrostem promienia tego koła. Wartość
względna tej różnicy jest rzędu 1√

n
, czyli odwrotności promienia koła.

Na podstawie tabeli z rysunku 2 można obliczyć tę różnicę z dużą dokładnością,
biorąc np. za liczbę π jej przybliżenie Archimedesowe 22

7 .
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Rys. 3. Ilustracja zbieżności N(n2)/n2 → π

Wykres na rysunku 3 pokazuje, w jaki sposób N(r2)
r2 zbliża się do liczby π wraz

ze wzrostem r w zakresie 0 < r ⩽ 300. Tabela na rysunku 4 pokazuje wyliczenia
dla większych wartości r.

Nasuwają się dwa pytania.
(i) Czy istnieją wzory określające N(n) w zależności od n?
(ii) Czy może istnieją figury płaskie, dla których liczba punktów kratowych

leżących w ich wnętrzu i na ich brzegu wyraża nie tylko w przybliżeniu, ale –
poprzez konkretną formułę – dokładnie pola tych figur?
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Na oba te pytania odpowiedź jest pozytywna. Odpowiedzią na pytanie (i) jest
formuła Gaussa:

N(n) = 1 + 4
(

⌊n⌋ −
⌊n

3

⌋
+
⌊n

5

⌋
−
⌊n

7

⌋
+
⌊n

9

⌋
−
⌊ n

11

⌋
+ . . .

)
,(2)

gdzie ⌊·⌋ jest funkcją podłogi. Łatwo stąd wyznaczyć bezpośrednio wartości dla

Podłoga ⌊x⌋ liczby x to największa liczba
całkowita nie większa od x.
Przykładowe wartości N(n):

N(0) = 1
N(1) = 1 + 4 = 5
N(2) = 1 + 4 · 2 = 9
N(3) = 1 + 4 · 3 − 4 = 9
N(4) = 1 + 4 · 4 − 4 = 13

n = 0, 1, 2, 3, 4 (na marginesie). Z równości N(2) = N(3) możemy wywnioskować,
że na okręgu C(

√
3) nie ma żadnych punktów kratowych, a z tego, że

N(4) − N(3) = 4, wynika, że na okręgu C(
√

4) jest ich 4.

Zanim przejdziemy do dowodu wzoru Gaussa, wykażemy jedną z jego
konsekwencji, słynny wzór Leibniza:

(3) π

4 = 1 − 1
3 + 1

5 − 1
7 + 1

9 − 1
11 + . . .

Załóżmy, że
√

n jest liczbą naturalną nieparzystą.
Napiszmy wzór Gaussa (2) w postaci:
1
4(N(n)−1) = ⌊n⌋−

⌊n

3

⌋
+
⌊n

5

⌋
−
⌊n

7

⌋
+. . .±

⌊
n√
n

⌋
±θ

√
n,

gdzie θ jest ułamkiem właściwym. Korzystamy tu
z tego, że szereg jest naprzemienny, a moduły jego
wyrazów tworzą ciąg nierosnący. Wtedy moduł
reszty szeregu jest nie większy od modułu pierwszego
odrzuconego wyrazu, czyli ⌊ n√

n+2 ⌋. Liczba ta jest
mniejsza od liczby naturalnej ⌊ n√

n
⌋ =

√
n, można ją

zatem zapisać jako θ
√

n, gdzie θ jest jak wyżej.
Następny krok to zastąpienie funkcji podłogi ułamka
samym ułamkiem. Ponieważ k

n − ⌊ kn⌋ ⩽ 1, a liczba
zachowanych wyrazów szeregu jest równa

√
n+1
2 <

√
n,

więc
1
4(N(n) − 1) = n − n

3 + n

5 − n

7 + . . . ± n√
n

± θ
√

n ± θ′√n,

gdzie θ′ jest także ułamkiem właściwym. Dzieląc teraz
obie strony przez n, otrzymujemy
1

4n
(N(n) − 1) = 1 − 1

3 + 1
5 − 1

7 + . . . ± 1√
n

± θ√
n

± θ′
√

n

dla liczb n przebiegających ciąg kwadratów liczb
nieparzystych.

Biorąc pod uwagę zbieżność N(n)
n → π wynikającą

z oszacowania (1) i zbiegając z n do nieskończoności,
dostajemy wzór Leibniza (3).

Przejdźmy teraz do dowodu formuły Gaussa. Jeśli przez
R(n) oznaczymy liczbę punktów kratowych na okręgu
C(

√
n), to N(n) = R(0) + R(1) + . . . + R(n). Znając

wartości R(k) dla poszczególnych k, możemy obliczyć
N(n), i taka też była droga odkrycia powyższej formuły
Gaussa. Rzecz sprowadza się zatem do pytania o liczbę
pierwiastków całkowitych a, b równania

a2 + b2 = n(4)

dla danej liczby naturalnej n. Mamy następujące:

Twierdzenie 1 (za [Hilbert, 1956]). Liczba
przedstawień liczby całkowitej n jako sumy kwadratów
dwóch liczb całkowitych jest równa czterokrotności
różnicy liczby dzielników liczby n o postaci 4k + 1 i liczby
dzielników o postaci 4k + 3.

Dla przykładu R(3) = N(3) − N(2) = 0. Liczba pierwsza 3 ma jedynie
dzielniki 1 i 3, więc na mocy powyższego twierdzenia R(3) = 4(1 − 1) = 0.
Dalej: R(4) = N(4) − N(3) = 4. Wśród dzielników liczby 4 (czyli 1, 2, 4)
nie ma dzielników postaci 4k + 3, więc z twierdzenia otrzymujemy
R(4) = 4(1 − 0) = 4. I rzeczywiście, na okręgu C(

√
4) mamy cztery punkty

kratowe, (2, 0), (0, 2), (−2, 0), (0, −2), będące całkowitymi rozwiązaniami równania
a2 + b2 = 4 (patrz rys. 5).(0, 0)

C
(
√ 1)

C(
√

2)

C( √
3)

C
(
√ 4)

Rys. 5. Punkty kratowe na okręgach
o promieniach

√
n dla n = 1, 2, 3, 4

Bezpośrednie wykorzystanie Twierdzenia 1 dla obliczenia kolejnych R(n),
a następnie równości N(n) = R(0) + R(1) + . . . + R(n) dla obliczenia N(n)
byłoby niezmiernie żmudne dla dużych n. Jest jednak dużo prostszy sposób
obliczenia N(n). Najpierw obliczamy liczbę dzielników postaci 4k + 1 dla
wszystkich liczb naturalnych m nieprzekraczających n i od tej liczby odejmujemy
liczbę dzielników postaci 4k + 3, też dla wszystkich m ⩽ n, otrzymując:(

⌊n⌋ +
⌊n

5

⌋
+
⌊n

9

⌋
+
⌊ n

13

⌋
+ . . .

)
−
(⌊n

3

⌋
+
⌊n

7

⌋
+
⌊ n

11

⌋
+ . . .

)
Mnożąc powyższe wyrażenie przez 4 i dodając do niego jedynkę odpowiadającą

Na przykład dla n = 10 wśród liczb
1, 2, . . . , 10 mamy trzy będące postaci
4k + 1: 1, 5, 9. Przez 1 dzielą się wszystkie
z powyższej dziesiątki, 10 = ⌊ 10

1 ⌋, przez 5
dzielą się dwie, 2 = ⌊ 10

5 ⌋, przez 9 dzieli się
tylko jedna, 1 = ⌊ 10

9 ⌋. Przy tym ⌊ 10
13 ⌋

i wszystkie następne wyrazy szeregu
⌊10⌋ + ⌊ 10

5 ⌋ + ⌊ 10
9 ⌋ + ⌊ 10

13 ⌋ + . . . są równe
zero.

punktowi kratowemu (0, 0), po przegrupowaniu wyrazów, otrzymujemy
formułę (2). Bardziej formalne ujęcie rozważań przedstawionych w punkcie (i)
można znaleźć w artykule Deltowym Michała Krycha [Krych, 2019].

Obliczenia dla wielokątów. Przejdźmy do pytania (ii) o dokładne
wyznaczenie pola za pomocą zliczania punktów kratowych. Jedną z możliwych
odpowiedzi na to pytanie jest następujące twierdzenie z 1899 roku:
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Twierdzenie Picka. Pole dowolnego prostego wielokąta P , którego
wierzchołkami są punkty kratowe, jest dane wzorem

A = W + 1
2 B − 1,(5)

gdzie W jest liczbą punktów kratowych wewnątrz P , a B jest liczbą punktów
kratowych na brzegu P , wliczając wierzchołki.

Twierdzenie Picka łączy geometryczną teorię liczb z mierzeniem pól, czyli, jak
sama nazwa wskazuje, z klasyczną geometrią. Sama jego natura jest jednakże
topologiczna. Aby to zobaczyć, rozważymy prostszą, ale ogólniejszą sytuację.
Niech G będzie figurą płaską, złożoną z segmentów trójkątnopodobnych o tym
samym polu d, tak jak to widać na rysunku 6. Oznaczmy liczbę jej wierzchołków
wewnętrznych przez W , zewnętrznych przez B, liczbę krawędzi przez K, a pole
figury G przez A. Przypomnijmy ponadto równość Eulera: V − E + F = 1,
gdzie V , E i F to, odpowiednio, liczby wierzchołków, krawędzi i ścian grafu
narysowanego na płaszczyźnie bez przecinających się krawędzi.

W naszej sytuacji V = W + B, F = A
d i E = K. Pokażemy, że K = 3W + 2B − 3.

A
B

C D

E
F

G
H

Rys. 6. Dołączając jeden wierzchołek
i dwie krawędzie do obszaru A,
otrzymujemy obszar B i mamy
3 + 2 = 3 · 0 + 2 · 4 − 3. Dochodzimy w ten
sposób do 15 = 3 · 0 + 2 · 9 − 3 dla sumy
pierwszych siedmiu obszarów. Na koniec
dołączamy jedną krawędź zewnętrzną,
jeden wierzchołek zewnętrzny staje się
wtedy wierzchołkiem wewnętrznym
i mamy 16 = 3 · 1 + 2 · 8 − 3 dla całej
figury

Rzeczywiście wzór ten zachodzi dla pojedynczego obszaru trójkątnopodobnego,
gdyż mamy wtedy K = 3, W = 0, B = 3 i 3 = 3 · 0 + 2 · 3 − 3. Jeśli do tego obszaru
dołączymy podobny, przylegający do niego element naszej wyjściowej figury, to
prawdziwość tego wzoru się nie zmieni, i tak będzie aż do ułożenia całej figury –
rysunek 6 ilustruje, w jaki sposób dodawać kolejne obszary. Wstawiając teraz
postać V , E i F do równości Eulera, dostaniemy

A = 2dW + dB − 2d.

Dla d = 1
2 otrzymujemy stąd równanie (5).

Rys. 7. Pole figury po lewej stronie
obliczone ze wzoru (5) jest równe
A = 11 + 1

2 10 − 1 = 15. Po prawej stronie
jedna z triangulacji tej figury. Każdy
z 30 trójkątów podstawowych ma pole
równe 1

2

Dla dowodu twierdzenia Picka wystarczy pokazać, po pierwsze, że każdy obszar
z założeń tego twierdzenia można rozłożyć na trójkąty podstawowe, to znaczy
niezawierające punktów kratowych w swoich wnętrzach ani na swoich bokach
(z wyjątkiem wierzchołków) – dowód tej własności pomijamy, po drugie, że pole
każdego trójkąta podstawowego jest równe 1

2 i po trzecie, że dla całego obszaru
zachodzi równość K = 3W + 2B − 3.

To, że pole każdego trójkąta podstawowego jest równe 1
2 , wynika z rozumowania

użytego dla dowodu nierówności (1). Każdy trójkąt podstawowy można
uzupełnić do równoległoboku niemającego punktów kratowych w swoim wnętrzu
ani na krawędziach, a więc równoległoboku generującego siatkę opartą na
punktach kratowych. Załóżmy, że pole równoległoboku siatki jest równe α.
Wykorzystując otrzymaną siatkę do aproksymacji pola koła, podobnie jak
powyżej, otrzymujemy: ∣∣∣∣αN(n)

n
− π

∣∣∣∣ ⩽ 4Dπ√
n

,

gdzie D jest średnicą równoległoboku siatki. Jako że N(n)
n → π wraz ze

wzrostem n, to α = 1, a stąd α
2 = 1

2 .

Dowód równości K = 3W + 2B − 3 dla obszaru wielobocznego przeprowadzamy
jak powyżej, dobudowując kolejne trójkąty podstawowe.

Warto porównać przedstawiony schemat dowodu twierdzenia Picka z dowodem
Cauchy’ego równania Eulera dla wielościanów [Lakatos, 2005, str. 28–32],
aby zdać sobie sprawę z czyhających pułapek natury topologicznej w trakcie
dowodzenia metodą triangulacji. Na temat twierdzenia Picka, rozmaitych
jego dowodów i uogólnień istnieje obszerna literatura. O powiązaniu tego
twierdzenia z równaniem Eulera przeczytać można np. w [Detemple, 1974].
Ciekawe fizyczne intuicje związane z twierdzeniem Picka przedstawił Jarosław
Górnicki w artykule „Wodny” dowód twierdzenia Picka (∆12

24).
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Dirichlet w górach Paweł Rafał BIELIŃSKI*
Nieczęsto zdarza się, żeby zadanie z Międzynarodowej Olimpiady Matematycznej* Nauczyciel, Warszawa
(International Mathematical Olympiad, IMO) było dostępne dla ucznia szkoły
podstawowej. Mamy na myśli coś, co da się wyjaśnić w ciągu, powiedzmy,
jednego kółka matematycznego, bez konieczności wprowadzania trudnych pojęć,
twierdzeń czy zaawansowanych narzędzi. Tym bardziej cieszą nas takie właśnie
zadania, a jedno z nich pojawiło się nie tak dawno, bo w roku 2020. Przytoczmy
(dość długą) treść w oryginalnym brzmieniu.

IMO 2020, zadanie 4. Dana jest liczba całkowita n > 1. Na zboczu góryPrzyznajmy uczciwie, że połowa
uczestników tych zawodów otrzymała
maksymalną ocenę za to zadanie. znajduje się n2 stacji kolejki linowej, każda na innej wysokości. Każda z dwóch

firm obsługujących kolejkę, A i B, posiada dokładnie k wyciągów; każdy z nich
umożliwia bezpośredni przejazd z jednej ze stacji na pewną stację położoną wyżej
(bez zatrzymywania się po drodze). Wszystkie k wyciągów firmy A mają k różnych
stacji początkowych oraz k różnych stacji końcowych, a ponadto jeśli jeden wyciąg
rozpoczyna trasę wyżej od pewnego innego, to również kończy trasę wyżej od
niego. Te same warunki są spełnione przez połączenia obsługiwane przez firmę B.
Powiemy, że dwie stacje są połączone przez firmę, jeśli rozpoczynając ze stacji
położonej niżej, można dojechać do stacji położonej wyżej, z użyciem wyłącznie
połączeń (jednego lub więcej) obsługiwanych przez tę firmę (żadne inne sposoby
przemieszczania się pomiędzy stacjami kolejki nie są dozwolone).

Wyznaczyć najmniejszą dodatnią liczbę całkowitą k, dla której z całą pewnością
(niezależnie od układu połączeń) istnieje para stacji połączonych przez obydwie
firmy.

Graf, jaki jest, każdy widzi. Pisaliśmy
o nich już nie raz, np. w ∆3

11, ∆8
24

czy ∆4
25.

Dla matematyka jest czymś naturalnym przetłumaczenie treści tego zadania
na język teorii grafów. Przy tym będziemy używać jedynie najprostszych jej
pojęć. Graf jest strukturą złożoną z dwóch rodzajów elementów. Pierwszym
z nich są wierzchołki, a drugim krawędzie, które stanowią połączenia między
tymi pierwszymi. Każda krawędź łączy dwa wierzchołki, zwane jej końcami.
Jest jasne, że taka struktura nadaje się do modelowania różnych rodzajów sieci,
również tej niemal jawnie opisanej w zadaniu, złożonej ze stacji połączonych
wyciągami.

Do rozwiązania naszego problemu użyjemy nie jednego, lecz dwóch grafów, A
i B – po jednym dla każdej z dwóch firm. Wierzchołkami każdego z nich będą
stacje kolejki linowej, natomiast krawędziami – wyciągi odpowiedniej firmy.

W danym grafie zbiór wierzchołków, które są między sobą połączone
bezpośrednio lub pośrednio, nazywa się spójną składową lub po prostu składową
tego grafu. Naszym celem jest więc pokazanie, że przy założeniach zadania
i dla odpowiednio dużej liczby k pewne dwa wierzchołki należą do tej samej
składowej grafu A oraz tej samej składowej grafu B. Korzystnie byłoby więc,
gdyby w którymś z tych grafów zaistniała duża składowa (będzie wiele par stacji
do wyboru), a w drugim składowych było niewiele (żeby dana para miała duże
szanse znaleźć się w tej samej). Podany poniżej lemat jest sercem rozwiązania.

Lemat 1. Jeśli każdy z grafów A i B ma mniej niż n składowych, to pewne
dwa wierzchołki należą do tej samej składowej grafu A oraz tej samej składowej
grafu B.

Dowód. Ponieważ graf A ma n2 wierzchołków podzielonych między mniej niż nDwukrotnie objawia się tu zasada
szufladkowa Dirichleta. Ten bardzo
intuicyjny fakt głosi, że jeśli
w s szufladach znajduje się łącznie
p piłeczek, to w którejś szufladzie
znajduje się ich co najmniej p

s .
O zasadzie szufladkowej pisaliśmy na
przykład w ∆2

95 i ∆9
18.

składowych, więc któraś z jego składowych zawiera więcej niż n wierzchołków.
W szczególności składowa ta ma więcej wierzchołków, niż istnieje składowych
grafu B. Zatem pewne dwa z nich należą do tej samej składowej grafu B,
spełniając tym samym warunki lematu. □

Lemat 1 można udowodnić, stosując
zasadę szufladkową tylko raz.
Pozostawiamy to jako ćwiczenie dla
Czytelnika Upraszczającego.

Być może większa część rozwiązania właśnie się dokonała. Pozostało jedynie
określić, jak wielu wyciągów potrzeba, aby zagwarantować połączenie
istniejących stacji w mniej niż n składowych.

Ponieważ stacje kolejki – wierzchołki grafów – położone są na różnych
wysokościach, możemy ponumerować je liczbami naturalnymi 1, 2, 3, . . . , n2, od
położonej najniżej do położonej najwyżej.
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Lemat 2. Rozważamy wybrany z grafów A, B. Każda
składowa tego grafu jest ścieżką, która nie zawraca.
Ściślej, jeśli do pewnej składowej należą wierzchołki
i1 < i2 < i3 < · · · < it, to jedyne krawędzie tej składowej
są postaci imim+1.

Dowód. Z definicji spójnej składowej wynika wprost,
że żadna z tych stacji nie może być połączona z żadną
spoza tej listy. Z drugiej strony, dana stacja może być
połączona bezpośrednio tylko z jedną wyższą od siebie
i jedną od siebie niższą; istotnie, połączenie a i b z c,
gdzie a < b < c, przeczyłoby założeniu, że wyższy start
oznacza wyższy koniec; analogicznie dla a > b > c. Zatem
jeśli połączone są stacje i < j, a także j z l, to musi
zachodzić j < l. Rozumując tak dalej, dostajemy dowód
naszej obserwacji. □

W szczególności żaden z grafów A, B nie zawiera cyklu.
Możemy teraz powiązać liczbę k z liczbą składowych
grafu, a więc z lematem 1.

Lemat 3. Graf bez cykli o N wierzchołkach
i k krawędziach ma dokładnie N − k składowych.

Dowód. Skonstruujemy nasz graf, zaczynając od k = 0
i dodając krawędzie jedna po drugiej, w dowolnej
kolejności. Oczywiście dla k = 0 każdy wierzchołek
jest sam w swojej składowej, więc składowych
jest N . Dodając nową krawędź (na dowolnym
etapie konstrukcji), nie możemy połączyć nią pary
wierzchołków należących do jednej składowej – wówczas
powstałby cykl. Oznacza to, że każda dodawana przez
nas krawędź łączy wierzchołki, które uprzednio należały
do dwóch różnych składowych. Tym samym łączy ona
te dwie składowe, zmniejszając łączną ich liczbę o 1.
Dowód jest zakończony. □

Jesteśmy już bardzo blisko rozwiązania. Z lematu 3
wynika, że dla k = n2 − n + 1 każdy z grafów A, B
ma dokładnie n − 1 składowych, a wówczas na mocy
lematu 1 istnieje para wierzchołków połączona przez
każdą z dwóch firm. Bingo!

A

B

Pozostaje jeszcze jeden istotny szczegół. Czy jest to rzeczywiście minimalne k?
Innymi słowy, czy może zdarzyć się, że dwóch stacji o żądanej własności nie
znajdziemy przy k = n2 − n? Za odpowiedź niech posłuży schemat przedstawiony
na marginesie (każdy kolor odpowiada połączeniom innej firmy).

Warto pokazywać uczniom zadania takie, jak to – wymagające, a jednak
dostępne. Może nawet się zdarzyć, że zostanie rozwiązane przez samych uczniów.
Ważne jest jednak, by nie zdradzać zbyt wcześnie jego źródła, aby problem nie
został z góry uznany za niemożliwy do rozwiązania. Właściwie rozegrany, taki
fortel może niejednej młodej osobie pokazać, jak wiele jest w jej zasięgu.

Zadania
Przygotowała Magda CWOJDZIŃSKA

F 1137. Sonda kosmiczna znajduje się w przestrzeni międzyplanetarnej
w odległości 570 000 km od Jowisza. Na pokładzie sondy znajduje się szpula
magnetofonu o masie 1,3 kg i promieniu 12 cm, będąca walcem obracającym
się wokół swojej osi. Szpula zostaje wprawiona w ruch obrotowy z okresem 8 s.
Przyjmij, że oś obrotu szpuli pokrywa się z jedną z osi głównych sondy,
a moment bezwładności całej sondy (bez szpuli) względem tej osi wynosi
1000 kg · m2.

Zakładamy, że przed uruchomieniem magnetofonu sonda była nieruchoma i że
nie działają na nią żadne siły zewnętrzne. Oblicz, o ile maksymalnie przesunie
się środek tarczy Jowisza na fotografii wykonanej z sondy, w wyniku jej obrotu,
po 2 minutach pracy magnetofonu.

Rozwiązania na str. 24

F 1138. Na rysunku pokazano szklaną soczewkę o promieniu krzywizny
R = 3 m umieszczoną na płaskiej płytce szklanej i oświetlonej od góry światłem
białym. Wyznacz promienie r prążków interferencyjnych – promienie pierścieni
Newtona – odpowiadających barwie niebieskiej 460 nm. Przyjmij, że r ≪ R.

R

r d

padające
światło

powietrze
szkło

szkło

Przygotował Dominik BUREK

M 1843. Udowodnić, że dla dowolnej liczby całkowitej
n > 1 liczby 1, 2, . . . , 2n można połączyć w pary tak,
że iloczyn sum liczb w parach jest kwadratem liczby
całkowitej.

M 1844. Na tablicy 10 × 10 znajduje się pewna
liczba mrówek, każda zasiada na innym polu. Co
minutę każda mrówka przechodzi do sąsiedniego
pola na wschód, na południe, na zachód albo na

północ. Kontynuuje drogę w tym samym kierunku
tak długo, jak to możliwe. Kiedy mrówka dotrze do
krawędzi tablicy, zmienia zwrot (utrzymując kierunek
poruszania się). Wiadomo, że w ciągu godziny żadne
dwie mrówki nie spotkały się na tym samym polu. Jaka
jest maksymalna możliwa liczba mrówek na tablicy?
M 1845. Sfera przecina każdą z płaszczyzn ścian
czworościanu foremnego wzdłuż okręgu. Promienie tych
okręgów wynoszą odpowiednio 1, 2, 3 i 4. Czy promień
sfery może być równy 5?
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Rzeczywiście zespolona?
Patryk MICHALSKI** Student, Wydział Fizyki, Uniwersytet

Warszawski
Równo wiek temu nastąpiło wielkie wzmożenie pracy wybitnych umysłów,
które po kilku latach twórczego fermentu zaowocowało powstaniem mechaniki
kwantowej w formie, jaką znamy dziś. Nowa teoria wymierzyła liczne ciosy
„zdrowemu rozsądkowi”, sprowadzając na manowce nawet postaci pokroju
Alberta Einsteina. Szczególnie silny zgrzyt z utartymi klasycznymi intuicjami –
budzący głęboki niepokój twórcy teorii względności – wywołała zasada głosząca,
że wynik pojedynczego pomiaru kwantowego nie jest przez nic z góry określony:
można przewidzieć jedynie prawdopodobieństwo otrzymania danego wyniku.
Spór dotyczący tej kwestii sprowadzał się w gruncie rzeczy do pytania, czy
nasz świat jest, czy też nie jest deterministyczny – i został całkiem niedawno
rozstrzygnięty na korzyść mechaniki kwantowej dzięki słynnym nierównościom
Bella. Zdrowy rozsądek jak zwykle okazał się – cytując Einsteina – „zbioremO rozważaniach teoretycznych, które

umożliwiły eksperymentalne
potwierdzenie indeterminizmu (czyli
nieprzewidywalności) kwantowych zjawisk,
można przeczytać w ∆5

01 oraz w ∆2
21.

przesądów nabytych w dzieciństwie”.

Jeszcze inny problem nurtował twórców mechaniki kwantowej już u jej zarania,
choć szybko o nim zapomniano. Dotyczył on pewnego szczególnego obiektu,
który zdawał się nierozerwalnie spleciony z matematyczną maszynerią teorii, lecz
znikał, gdy tylko docierano w obliczeniach do wielkości, które rzeczywiście da
się zmierzyć. Tak pisał o tym Erwin Schrödinger w liście do Hendrika Lorentza
z 6 czerwca 1926 roku [1]:

„Najbardziej rażące – i zasługujące na bezpośredni sprzeciw – jest tutaj
użycie liczb zespolonych”.

Liczby zespolone to osobliwe stworzenia. Powstają jako rozszerzenie zbioru
liczb rzeczywistych poprzez „dorzucenie” do niego jednostki urojonej, której
kwadrat z definicji jest równy minus jeden: i2 = −1. Jak sama nazwa wskazuje, naDowolną liczbę zespoloną można zapisać

w postaci z = a + ib, gdzie a, b ∈ R.
Widać stąd, że istnieje jednoznaczna
odpowiedniość między liczbami
zespolonymi a parami liczb rzeczywistych.
Sprzężeniem zespolonym liczby z
nazywamy z̄ = a − ib. Zwięzłe i eleganckie
wprowadzenie do liczb zespolonych
przedstawił Marek Kordos w ∆12

17.

pierwszy rzut oka trudno tę wielkość odnieść do jakichkolwiek przyziemnych
ludzkich doświadczeń. Dlaczego więc pojawia się w modelu opisującym
rzeczywistość?

Trzeba zaznaczyć, że fizycy poznali liczby zespolone (i zaczęli je darzyć
szczególnym uczuciem) na długo przed kwantowym przełomem. Sęk w tym,
że w ramach klasycznych teorii służyły one wyłącznie jako potężne narzędzie
ułatwiające rachunki. Bez liczb zespolonych klasyczna XIX-wieczna fizyka
też by sobie poradziła – tylko potrzebowałaby do tego trochę więcej papieru.
Z mechaniką kwantową było inaczej. Jednostka urojona wprosiła się do
najbardziej fundamentalnych równań i nikt nie znalazł prostego sposobu, by się
jej stamtąd pozbyć. Początkowe oburzenie Ojców Założycieli minęło jednak, gdy
nowa teoria zaczęła osiągać pierwsze doniosłe sukcesy, a tym samym okazała się
bardzo użytecznym narzędziem. Temat czekał, zamieciony pod dywan, budząc
przez długi czas jedynie śladowe zainteresowanie środowiska naukowego.

Sytuacja zmieniła się pięć lat temu, gdy grupa fizyków pod kierunkiem
Miguela Navascuésa rzuciła nieco światła na pytanie o rolę liczb zespolonych
w kwantowomechanicznym formalizmie [2]. Pokazali oni, że przyjmując pewne
standardowe założenia dotyczące matematycznej struktury teorii, żadna
alternatywna wersja mechaniki kwantowej oparta wyłącznie na liczbach
rzeczywistych nie jest w stanie odtworzyć wszystkich przewidywań wersji
zespolonej. Co więcej, zaproponowali schemat umożliwiający eksperymentalne
sprawdzenie, która wersja jest tą właściwą. Zanim jednak pochylimy się nad
pomysłami stojącymi za tym wynikiem, przyjrzyjmy się bliżej, jak liczby
zespolone pojawiają się w opisie kwantowych zjawisk – i jaką taktykę można
by przyjąć, żeby się ich pozbyć.

Przywołamy najpierw najważniejszy spośród wspomnianych wyżej
standardowych postulatów leżących u podstaw mechaniki kwantowej. Zgodnie
z nim dowolnemu układowi fizycznemu przyporządkować można zbiór H złożony
z wektorów, który nazywa się przestrzenią Hilberta. W zbiorze H zdefiniowane
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jest działanie nazywane iloczynem skalarnym, które „połyka” dowolne dwaIloczyn skalarny dwóch wektorów
ϕ, ψ ∈ H oznaczamy jako ⟨ϕ|ψ⟩.
Działanie to ma następujące własności:
• ⟨ϕ|ψ⟩ = ⟨ψ|ϕ⟩,
• Dla ψ = c1ψ1 + c2ψ2 zachodzi

⟨ϕ|ψ⟩ = c1 ⟨ϕ|ψ1⟩ + c2 ⟨ϕ|ψ2⟩.

wektory, a „wypluwa” liczbę. Każdy stan kwantowy układu jest reprezentowany
przez wektor należący do przestrzeni H, którego iloczyn skalarny z samym sobą
wynosi jeden (o takim wektorze mówimy, że jest znormalizowany). W wektorze
stanu zakodowane są informacje pozwalające wyznaczyć prawdopodobieństwa
wyników dowolnego pomiaru. Istotny punkt: składowe wektorów stanu mogą
być albo liczbami zespolonymi, albo rzeczywistymi – zależnie od rozpatrywanej
wersji teorii. Przyjmijmy na razie, że to jedyne, czym obie wersje mogą się od
siebie różnić.

Weźmy teraz pod lupę najprostszy kwantowy układ – spoczywający elektron.
Doświadczenia przeprowadzone w 1922 roku przez Otto Sterna i Waltera
Gerlacha wykazały, że każdy elektron posiada wewnętrzny moment pędu
nazywany spinem. O ile klasyczny moment pędu wynika z ruchu obrotowego, tak
spin jest po prostu „wbudowaną” własnością cząstki, jak na przykład ładunek
elektryczny. Żeby było ciekawiej, jeśli zmierzymy spin elektronu wzdłuż dowolnie
wybranej osi, to możemy uzyskać tylko dwa wyniki: albo spin skierowany
jest „w górę”, albo „w dół”, nic pomiędzy. Naturalne jest więc założyć, że
przestrzeń Hilberta takiego elektronu ma bazę złożoną z dwóch wektorów,
które odpowiadają dwóm możliwym stanom. Dowolny wektor stanu da się
przedstawić jako znormalizowaną kombinację wektorów bazowych – fachowo
nazywa się to superpozycją. Wiemy poza tym, że każdy wektor stanu powinien
umożliwić wyznaczenie prawdopodobieństwa uzyskania wyniku „w górę” lub
„w dół” wzdłuż dowolnej z trzech osi współrzędnych, a do tego potrzeba trzech
rzeczywistych parametrów.

Policzmy, ile parametrów można zakodować w wektorze stanu w obydwu
wariantach teorii. W wersji zespolonej dwie składowe dają cztery parametry
rzeczywiste (każda liczba zespolona to dwa parametry), jeden odpada przez
normalizację, więc zostają trzy parametry – dokładnie tyle, ile trzeba. Ale jeśli
wektor ma rzeczywiste składowe, to. . . jesteśmy zgubieni – po uwzględnieniu
normalizacji zostaje tylko jeden parametr rzeczywisty! To za mało. Bez
kombinowania nie da się opisać spinu elektronu tylko za pomocą liczb
rzeczywistych.

Widać wyraźnie, że alternatywna wersja mechaniki kwantowej wykorzystująca
wyłącznie liczby rzeczywiste musi opisywać spoczywający elektron przy
użyciu przestrzeni Hilberta, która ma cztery, a nie dwa, wymiary. W ogólnym
przypadku należy podwoić wymiar przestrzeni związanej z układem. To oznacza
obecność dodatkowych stanów, które z jakiegoś powodu nie są rozróżniane przez
nasze urządzenia pomiarowe. Pomysł może wygląda dziwnie, ale nie można
go odrzucić wyłącznie na podstawie upodobań estetycznych. Szczególnie, że
opierając się na tym pomyśle, dla dowolnego układu składającego się z jednej
cząstki o jednym stopniu swobody da się wymyślić konstrukcję, która daje
identyczne przewidywania jak teoria zespolona. Powtórzmy: jednej cząstki
o jednym stopniu swobody. A co z układami, które nie mają tej własności?

Tu trzeba przywołać kolejny standardowy postulat: jeżeli układ fizyczny
składa się z dwóch podukładów, którym odpowiadają przestrzenie Hilberta
H1 oraz H2, to przestrzeń Hilberta całego układu ma strukturę iloczynuRozważmy dwie pary wektorów:

ϕ1, ψ1 ∈ H1 oraz ϕ2, ψ2 ∈ H2. Wówczas
iloczyn skalarny wektorów ϕ1 ⊗ ϕ2 oraz
ψ1 ⊗ ψ2 ∈ H1 ⊗ H2 jest zdefiniowany jako
⟨ϕ1|ψ1⟩ ⟨ϕ2|ψ2⟩.

tensorowego H1 ⊗ H2. Z grubsza rzecz biorąc, zbiór H1 ⊗ H2 to przestrzeń
wektorowa, której bazę stanowią uporządkowane pary wektorów bazowych
przestrzeni H1 i H2 z odpowiednio zdefiniowanym iloczynem skalarnym. Stąd
wynika, że wymiar przestrzeni całego układu to iloczyn wymiarów przestrzeni
odpowiadających poszczególnym podukładom. Ustaliliśmy już wcześniej, że
przestrzeń wymiaru zespolonego n jest w pewnym sensie równoważna przestrzeni
wymiaru rzeczywistego 2n. Jeżeli więc mamy dwie przestrzenie zespolonych

Przykładowo przestrzeń Hilberta dwóch
spoczywających elektronów ma zespolony
wymiar cztery w konwencjonalnej teorii,
a szesnaście (a nie osiem!) w przypadku
modyfikacji używającej wyłącznie liczb
rzeczywistych. W drugim wypadku
dysponujemy więc zbyt dużą liczbą
parametrów rzeczywistych, w porównaniu
ze standardową zespoloną mechaniką
kwantową.

wymiarów, n i m, to zespolony wymiar ich iloczynu tensorowego jest równy nm,
a odpowiadające im rzeczywiste przestrzenie mają wymiary równe, odpowiednio,
2n, 2m oraz 2nm. Natomiast rzeczywisty wymiar iloczynu dwóch przestrzeni
wymiarów 2n i 2m jest równy 4nm. Widać więc, że jest zasadnicza różnica
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między tensorowym rozmnażaniem przestrzeni nad liczbami zespolonymi
i rzeczywistymi. Pojawia się więc potencjalna możliwość sprawdzenia, który
sposób opisu lepiej pasuje do rzeczywistości doświadczalnej. Grupa Navascuésa
postanowiła wykorzystać pojawiającą się tu rysę, zainspirowana pomysłem,
który pozwolił wcześniej potwierdzić indeterminizm zjawisk kwantowych.

Rozważmy źródło cząstek, w którym zachodzi proces kreacji pary
elektron–pozyton. W przypadku gdy w rozważanym procesie całkowity
moment pędu układu znika, składowe spinu powstałych w procesie cząstek
wzdłuż dowolnego kierunku muszą być przeciwnie skierowane. Obie cząstki
wysyłamy do odległych obserwatorów: elektron w jedną, a pozyton w drugą
stronę. Obserwatorzy dysponują dwoma detektorami mierzącymi rzut spinu
ustawionymi w różnych kierunkach i w każdym powtórzeniu eksperymentu
wybierają losowo, z którego detektora korzystają, wykonując pomiar na
otrzymanej cząstce. Jeśli uzyskają wynik „w górę”, to przypisują mu wartość +1,
a jeśli „w dół”, to −1. Potem wspólnie wyliczają wartość pewnego wyrażenia,
które zależy od rezultatu pomiarów i wybranych kierunków detektorów. Po
wielu powtórzeniach eksperymentu można wyliczyć średnią wartość tego
wyrażenia, którą oznaczymy przez S. W 1964 roku John Bell pokazał, że przy
odpowiednio sprytnym doborze wyrażenia i kierunków detektorów dla teorii
deterministycznych zachodzi zawsze S ⩽ 2, a mechanika kwantowa dopuszcza
nawet S = 2

√
2.Jak wyglądają rachunki dotyczące

nierówności Bella, można przeczytać we
wspomnianych już artykułach w ∆5

01 oraz
w ∆2

21.
Może więc dałoby się tak dobrać wspomniane wyrażenie i kierunki detektorów,
żeby S była ograniczona dla „rzeczywistej” modyfikacji mechaniki kwantowej,
a dla konwencjonalnej teorii mogła osiągać większe wartości? Okazuje się, że
w opisanym scenariuszu nie jest to możliwe. Wystarczy jednak wprowadzić
kilka drobnych ulepszeń: dodać jedno źródło i jednego obserwatora (wtedy jeden
obserwator otrzymuje dwie cząstki, na których wykonuje jednoczesny pomiar)
oraz zwiększyć liczbę detektorów w dyspozycji obserwatorów. W tej konfiguracji
można znaleźć takie wyrażenie i kierunki, że dla dowolnej modyfikacji teorii,
która używa wyłącznie liczb rzeczywistych oraz spełnia opisane wyżej postulaty,
zachodzi S < 7,66. Standardowa teoria dopuszcza zaś S = 6

√
2 ≈ 8,48.

Wykonano już dwa eksperymenty, których wyniki wskazują na słuszność
standardowej wersji mechaniki kwantowej – w obydwu przypadkach
nierówność obowiązująca dla teorii opartych na liczbach rzeczywistych została
złamana [3, 4]. Nie jest to ostateczny werdykt, ale bardzo silna przesłanka.
Zamiast popadać w samozadowolenie, zastanówmy się jednak, jakie wnioski
można z tego wszystkiego wyciągnąć. Z dużym prawdopodobieństwem należy
odrzucić możliwość, że formalizm mechaniki kwantowej da się oprzeć wyłącznie
na liczbach rzeczywistych, jeśli ma spełniać wspomniane wyżej standardowe
postulaty. Może jednak dałoby się odrzucić jedno z krępujących założeń?
Najmniej kontrowersyjnym kandydatem wydaje się ostatni postulat, ten
dotyczący iloczynu tensorowego. W zamian należałoby wtedy zaproponować
inny przepis na modelowanie złożonych układów.

W istocie da się to zrobić, wystarczy tylko użyć pomysłowego sposobu zapisu
jednostek rzeczywistej i urojonej:

1 ≡
(

1 0
0 1

)
, i ≡

(
0 −1
1 0

)
.

Łatwo sprawdzić, że powyższe macierze zachowują się dokładnie tak, jak
powinny. Przy odrobinie sprytu da się na tej podstawie zbudować rzeczywistą
teorię, która nie przestrzega postulatu iloczynu tensorowego i daje identyczne
przewidywania jak zespolona wersja – wystarczy w odpowiedni sposób zastąpić
wszystkie liczby zespolone macierzami [5]. Czy jednak nie jest to po prostu
„zakamuflowane” użycie liczb zespolonych? Można powiedzieć, że tak. Spójrzmy
na to z innej strony. Ten pozorny kamuflaż pokazuje, że liczby zespolone wcale
nie są tak odległe od rzeczywistości, jak mogłoby się wydawać. Tak jak niegdyś
w przypadku liczb niewymiernych czy ujemnych, zdrowy rozsądek znów okazuje
się niezbyt dobrym doradcą w sprawach zmatematyzowanego opisu świata.
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ąt Otwarty 12◦: Dwanaście

Bartłomiej PAWLIK Politechnika Śląska

System pozycyjny zapisu liczb jest jednym
z najdojrzalszych osiągnięć myśli abstrakcyjnej.
Najbardziej przyzwyczajeni jesteśmy do systemu
dziesiętnego (który wziął się zapewne stąd, że na
ogół tyle palców mają razem obie dłonie jednego
człowieka). Po chwilowym zastanowieniu można
zauważyć, że (często nieświadomie) mamy do czynienia
z wieloma innymi podstawami. Każdy otaczający
nas układ scalony pracuje w systemie dwójkowym.
Dzięki Sumerom i Babilończykom mamy 60 sekund
w każdej z 60 minut w godzinie. Właśnie ze względów
„czasowych” jednym z najbliższych nam systemów
niedziesiętnych jest system dwunastkowy (dozenalny).

Jak na dłoni widać, że zakończenia ludzkich kończyn
górnych sprzyjają nie tylko systemowi dziesiętnemu, ale
i dwunastkowemu! Zauważmy, że pięciopalczasta dłoń
na czterech palcach ma po trzy kostki każda – w sumie
dwanaście. Z kciukiem tych kostek mielibyśmy 14, ale
arytmetyczna przydatność systemu czternastkowego
jest nie lepsza niż dziesiętnego, zatem kciukowi można
dać inne zadanie – i traktować go jako „wskaźnik”
ułatwiający liczenie w kostkowym systemie dozenalnym.
Zatem na jednej dłoni możemy liczyć do tuzina, a drugą
możemy tuziny zliczać – więc na palcach i do grosa
doliczymy. Zresztą tak właśnie liczy się do dziś w wielu
regionach Azji.

Aby zapisywać liczby w systemie dwunastkowym, musimy uzupełnić zbiór
dziesięciu cyfr (0, 1, . . ., 9) dwiema dodatkowymi. W użyciu często są litery
A (10) i B (11) – pochodzące z systemu szesnastkowego. Bardziej oryginalnym
(i coraz popularniejszym) rozwiązaniem są odbicia lustrzane cyfr 2 i 3, czyli 2i 3.
W 2015 roku dostały one swoje miejsca w Unikodzie: 2to U+218A, natomiast 3
to U+218B. Nazywa się je, odpowiednio, dek i el.Raczej nie trzeba być fanem Stranger

Things, aby domyślić się, skąd pochodzą
obie nazwy, ale znam przypadek,
w którym znajomość tego serialu pomogła
rozszyfrować jedną z nich!

Dodajmy tutaj, że tworzenie nowych symboli poprzez izometryczne
przekształcanie istniejących nie jest niczym nowym w matematyce. W ten
sposób irlandzki matematyk William Hamilton stworzył symbol ∇ –
jako obrócenie greckiej litery ∆ (nazwa nowego symbolu, nabla, została
zaproponowana przez Williama Robertsona Smitha i oznacza starożytną
asyryjską harfę).

Dek i el zostały rozpowszechnione przez Dozenal Society of America
– stowarzyszenie, którego głównym celem jest propagowanie systemu
dwunastkowego. Jest ono również wydawcą czasopisma Duodecimal Bulletin,
którego pierwszy numer ukazał się w roku 1161, czyli osiem dekad (sic!) temu.
Świętym Graalem Stowarzyszenia jest niezwykle rozczulająca „konwersja
cywilizacyjna” z systemu dziesiętnego na dwunastkowy. Jako główny argument
za globalną zmianą podaje się fakt, że liczba 12 ma relatywnie dużo dzielników
i dzięki temu rozpieszcza prostymi ułamkami z życia codziennego: nie tylko
połowy i ćwiartki, ale także trzecie, szóste i dwunaste części całości mają ładny
(czyt. skończony) zapis. Jedną z przeszkód na drodze do celu dozenalsów jestCzęsto się tutaj pomija fakt, że liczby 1/5

i 1/10 tracą tę własność – ale kto by się
przejmował takimi liczbami jak 1/5
w dwunastkowym świecie!

świat pomiarów, który od wielu dekad jest urządzony dziesiętnie – przedrostki
jednostek miar w układzie SI to całkowite potęgi liczby 10 – więc „wielka
zmiana podstawy” oznaczałaby niezwykle skomplikowaną zmianę standardów
na bardzo wielu płaszczyznach.

Co ciekawe, historia zna przypadek, w którym nie udało się zastąpić systemu
dwunastkowego systemem dziesiętnym! W trakcie XVIII-wiecznej rewolucji
francuskiej planowano daleko idące zmiany w mierzeniu czasu: podział doby
na 10 godzin, z których każda ma 100 minut po 100 sekund. Liczba 12 miała
zostać oszczędzona jedynie w liczności miesięcy. Rewolucyjne zmiany mierzenia
czasu się ostatecznie nie przyjęły – z tego samego powodu, z którego system
dwunastkowy nigdy nie wyprze systemu dziesiętnego w większości pozostałych
kontekstów.

Na koniec dodajmy, że niektórzy nieroztropni dozenalsi mogą się posługiwać
również takim argumentem wyższości systemu dwunastkowego nad dziesiętnym,
że im większa podstawa, tym krótszy zapis danej liczby. Entuzjastom tego
uzasadnienia proponuję zapoznać się z cyframi cysterskimi.

Wspomniana przewaga tak naprawdę jest
zaniedbywalna: nawet tak ogromna liczba
jak googol w zapisie dwunastkowym ma
jedynie kilka cyfr mniej niż w zapisie
dziesiętnym.
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Sortowanie naleśników
Marcin PECZARSKI** Wydział Matematyki, Informatyki

i Mechaniki, Uniwersytet Warszawski
Jacob Eli Goodman (pod pseudonimem Harry Dweighter) w roku 1975 zamieścił
w The American Mathematical Monthly następujący problem: „Nasz szef kuchni
jest niechlujny, i gdy przygotowuje stos naleśników, wychodzą one wszystkie
różnej wielkości. Dlatego, gdy niosę je klientowi, w drodze do stolika porządkujęWarto przy okazji wspomnieć, że 2 lutego

obchodzimy Dzień Naleśnika, zaś w tym
roku 12 lutego wypada Tłusty Czwartek.
Smacznego!

je (aby najmniejszy znalazł się na górze i kolejno aż do największego na spodzie)
chwytając kilka z góry i odwracając je, powtarzając tę czynność (zmieniając
liczbę odwracanych [naleśników]) tyle razy, ile jest to konieczne. Jeśli jest
n naleśników, jaka jest maksymalna liczba odwróceń (jako funkcja n), które
będę musiał wykonać, aby je uporządkować?”

Funkcję, o której mowa powyżej, oznaczamy f(n). Stos naleśników
reprezentujemy jako permutację liczb od 1, która reprezentuje najmniejszy
naleśnik, do n, która reprezentuje największy naleśnik, gdzie n ⩾ 2.
Porządkowanie naleśników odpowiada sortowaniu rosnąco elementów permutacji
przez odwracanie kolejności elementów w jej prefiksach, dlatego problem pojawia
się w literaturze również pod nazwą sorting by prefix reversal. Sortowanie
permutacji (4, 6, 2, 5, 1, 3) może wyglądać na przykład tak (liczba nad strzałką
oznacza długość odwracanego prefiksu):

(4, 6, 2, 5, 1, 3) 3−→ (2, 6, 4, 5, 1, 3) 4−→ (5, 4, 6, 2, 1, 3)
2−→ (4, 5, 6, 2, 1, 3) 5−→ (1, 2, 6, 5, 4, 3)
6−→ (3, 4, 5, 6, 2, 1) 4−→ (6, 5, 4, 3, 2, 1) 6−→ (1, 2, 3, 4, 5, 6).

Aby posortować dowolną permutację, rozważamy kolejno elementy
t = n, n − 1, . . . , 3, zachowując niezmiennik, że elementy większe od t są już na
właściwych pozycjach. Jeśli t nie jest na pozycji t ani na początku permutacji,
to jest na pozycji od 2 do t − 1 i odwracamy tyle elementów, aby element t
znalazł się na początku permutacji. Jeśli t jest już na początku permutacji, to
odwracamy t elementów, co umieszcza t na pozycji t. W ten sposób za pomocą
co najwyżej 2(n − 2) odwróceń umieszczamy na docelowych pozycjach elementy
od 3 do n. Jeśli po tym elementy 1 i 2 nie są we właściwej kolejności, to za
pomocą jednego odwrócenia ustawiamy je w takiej kolejności. Powyższy
algorytm pokazuje, że f(n) ⩽ 2n − 3 dla n ⩾ 2.E. Győri, G. Turán, Stack of pancakes

(1978).
W.H. Gates, Ch.H. Papadimitriou,

Bounds for sorting by prefix reversal
(1979).

Przedstawimy teraz lepszy algorytm. Wymyślili go Ervin Győri i György
Turán oraz niezależnie od nich William Henry Gates III (bardziej znany jako
Bill Gates) i Christos Harilaos Papadimitriou. Równolegle z opisem samego
algorytmu będziemy analizować jego złożoność, a w tym celu potrzebujemy
wprowadzić pewne definicje. Dwa elementy na sąsiednich pozycjach permutacji
tworzą dobre sąsiedztwo, jeśli ich wartości różnią się o 1. Przyjmujemy ponadto,
że dobre sąsiedztwo tworzą też elementy 1 i n. Maksymalny podciąg elementów
(co najmniej dwóch) tworzących dobre sąsiedztwa nazywamy blokiem. Element
nienależący do żadnego bloku nazywamy wolnym. Przykładowo w permutacji
(3, 5, 4, 7, 1, 2, 6) mamy dobre sąsiedztwa (5, 4), (7, 1) i (1, 2), bloki (5, 4) i (7, 1, 2)
oraz elementy wolne 3 i 6. Dodawanie liczby całkowitej do elementu permutacji
lub odejmowanie liczby całkowitej od elementu permutacji wykonujemy
cyklicznie: n + 1 = 1, n + 2 = 2, 1 − 1 = n, 1 − 2 = n − 1 itd. Przyjmujemy,
że po wykonaniu ℓ odwróceń potencjał uzyskanej permutacji jest równy
Φℓ = ℓ + αw + βb, gdzie w jest liczbą elementów wolnych w tej permutacji,
b jest liczbą bloków w tej permutacji, a α i β są pewnymi stałymi, których
wartości wyznaczymy później. Przez ∆Φ oznaczamy zmianę potencjału
w sekwencji odwróceń. Wielokropkiem zastępujemy podciąg elementów
permutacji nietworzący dobrych sąsiedztw z elementami go poprzedzającym
i następującym po nim. Wielokropek może też oznaczać podciąg pusty.
Podkreśleniem zastępujemy podciąg bloku, być może pusty. Niech d ∈ {−1, 1}.
Zależnie od postaci permutacji rozpatrujemy następujące przypadki, za każdym
razem przedstawiając również odwrócenia, jakich należy wówczas dokonać.
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1. Permutacja zaczyna się elementem wolnym t.
(a) Istnieje element wolny t + d:

(t, . . . , t + d, . . . ) → (. . . , t, t + d, . . . ).

Jedno odwrócenie zamienia dwa elementy wolne
w jeden blok, czyli ∆Φ = 1 − 2α + β.

(b) Istnieje blok zaczynający się elementem t + d:

(t, . . . , t + d, , . . . ) → (. . . , t, t + d, , . . . ).

Jedno odwrócenie zmniejsza o jeden liczbę
elementów wolnych, czyli ∆Φ = 1 − α.

(c) Istnieją bloki kończące się elementami t + d
i t − d:

(t, . . . , , t + d, . . . , , t − d, . . . )
→ (t + d, , . . . , t, . . . , , t − d, . . . )
→ (. . . , , t + d, t, . . . , , t − d, . . . )
→ (t − d, , . . . , t, t + d, , . . . )
→ (. . . , , t − d, t, t + d, , . . . ).

Cztery odwrócenia zmniejszają o jeden
liczby elementów wolnych i bloków, czyli
∆Φ = 4 − α − β.

2. Permutacja zaczyna się blokiem o długości k, gdzie
1 < k < n − 1. Pierwszym elementem bloku jest t,
a ostatnim t + (k − 1)d.
(a) Istnieje element wolny t − d:

(t, , t + (k − 1)d, . . . , t − d, . . . )
→ (. . . , t + (k − 1)d, , t, t − d, . . . ).

Jedno odwrócenie zmniejsza o jeden liczbę
elementów wolnych, czyli ∆Φ = 1 − α.

(b) Istnieje blok zaczynający się elementem t − d:

(t, , t + (k − 1)d, . . . , t − d, , . . . )
→ (. . . , t + (k − 1)d, , t, t − d, , . . . ).

Jedno odwrócenie zmniejsza o jeden liczbę
bloków, czyli ∆Φ = 1 − β.

(c) Istnieją blok kończący się elementem t − d
i element wolny t + kd. Zależnie od ich
wzajemnego położenia stosujemy odwrócenia

(t, , t + (k − 1)d, . . . , , t − d, . . . , t + kd, . . . )
→ (t + kd, . . . , t − d, , . . . , t + (k − 1)d, , t, . . . )
→ (. . . , , t − d, . . . , t + kd, t + (k − 1)d, , t, . . . )
→ (t, , t + (k − 1)d, t + kd, . . . , t − d, , . . . )
→ (. . . , t + kd, t + (k − 1)d, , t, t − d, , . . . )

lub

(t, , t + (k − 1)d, . . . , t + kd, . . . , , t − d, . . . )
→ (t + kd, . . . , t + (k − 1)d, , t, . . . , , t − d, . . . )
→ (. . . , t + kd, t + (k − 1)d, , t, . . . , , t − d, . . . )
→ (t − d, , . . . , t, , t + (k − 1)d, t + kd, . . . )
→ (. . . , , t − d, t, , t + (k − 1)d, t + kd, . . . ).
Cztery odwrócenia zmniejszają o jeden
liczby elementów wolnych i bloków, czyli
∆Φ = 4 − α − β.

(d) Istnieje blok, którego pierwszym elementem jest
t + kd:

(t, , t + (k − 1)d, . . . , t + kd, , . . . )
→ (t + (k − 1)d, , t, . . . , t + kd, , . . . )
→ (. . . , t, , t + (k − 1)d, t + kd, , . . . ).

Istnieje blok, którego ostatnim elementem jest
t + kd:

(t, , t + (k − 1)d, . . . , , t + kd, . . . )
→ (t + kd, , . . . , t + (k − 1)d, , t, . . . )
→ (. . . , , t + kd, t + (k − 1)d, , t, . . . ).

Dwa odwrócenia zmniejszają o jeden liczbę
bloków, czyli ∆Φ = 2 − β.

3. Jeśli permutacja nie pasuje do żadnego z powyższych
przypadków, to jest blokiem. Jeśli nie jest to
permutacja (1, , n), to zależnie od jej postaci mamy
następujące przypadki:
(a) (n, , 1) n−→ (1, , n),
(b) (n − 1, , 1, n) n−1−−−→ (1, , n) dla n ⩾ 3,
(c) (n, 1, , n − 1) n−→ (n − 1, , 1, n) n−1−−−→ (1, , n)

dla n ⩾ 3,
(d) (2, , n, 1) n−1−−−→ (n, , 1) n−→ (1, , n) dla n ⩾ 3,
(e) (1, n, , 2) n−→ (2, , n, 1) dla n ⩾ 3 i dalej jak

w punkcie 3.d,
(f) (t + 1, , n, 1, , t) n−t−−→ (n, , t + 1, 1, , t) n−→

(t, , 1, t + 1, , n) t−→ (1, , n) dla 2 ⩽ t ⩽
n − 2,

(g) (t, , 1, n, , t + 1) n−→ (t + 1, , n, 1, , t) dla
2 ⩽ t ⩽ n − 2 i dalej jak w punkcie 3.f.

Będziemy wymagać, aby po odwróceniach z punktów 1
i 2 potencjał permutacji nie zwiększał się, czyli ∆Φ ⩽ 0,
więc muszą być spełnione nierówności:

(6)
α ⩾ 1,

α + β ⩾ 4,

2 ⩽ β ⩽ 2α − 1.

Potencjał Φ0 początkowej permutacji wynosi αw + βb. Ponieważ każdy blok
zawiera co najmniej dwa elementy, więc w ⩽ n − 2b, czyli Φ0 ⩽ αn + (β − 2α)b.
Korzystając z ostatniej nierówności w (6), dostajemy Φ0 ⩽ αn − b ⩽ αn. Równość
Φ0 = αn zachodzi, gdy permutacja ma n elementów wolnych. Każda sekwencja
odwróceń z punktów 1 i 2 zmniejsza liczbę elementów wolnych lub bloków, więc
po skończonej liczbie m odwróceń dochodzimy do punktu 3. Wtedy Φm = m + β.
W punkcie 3, aby dokończyć sortowanie, wykonujemy co najwyżej cztery
odwrócenia, zatem f(n) ⩽ m + 4 = Φm − β + 4. Ponieważ założyliśmy, że potencjał
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permutacji nie rośnie, więc Φm ⩽ Φ0 i stąd f(n) ⩽ αn − β + 4. Pozostaje znaleźć
rozwiązanie układu nierówności (6) minimalizujące wartość α. Jest to przykład
zagadnienia programowania liniowego. Dla dwóch niewiadomych możemy je
rozwiązać, stosując interpretację geometryczną, patrz rysunek na marginesie.
Otrzymujemy α = 5

3 i β = 7
3 . Zatem f(n) ⩽ 5(n + 1)/3.

α

β

β = 2

β = 2α − 1

1 5
3

2 3

2

7
3

3

α + β = 4
Nieco lepsze górne oszacowanie f(n) ⩽ (18/11)n + O(1) udowodnił Bhadrachalam
Chitturi ze współpracownikami. Ich dowód wymaga jednak rozpatrzenia 2220

B. Chitturi et al., An (18/11)n upper
bound for sorting by prefix reversals
(2009).

przypadków. Znamy dokładnie wartości f(n) dla n ⩽ 19, patrz tabela niżej (jest
to ciąg o numerze A058986 w The On-Line Encyclopedia of Integer Sequences).

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
f(n) 1 3 4 5 7 8 9 10 11 13 14 15 16 17 18 19 20 22

W mojej pracy Note on pancake sorting, opublikowanej w czasopiśmie
Information Processing Letters, zajmowałem się oszacowaniami
dolnymi. Skonstruowałem dla większych n permutacje świadczące, że
f(n) ⩾ ⌊(15n + 9)/14⌋.

Na koniec zauważmy, że w całym artykule milcząco zakładaliśmy, że strony
naleśnika są nierozróżnialne. Każdy, kto smażył naleśniki, wie jednak, że zwykle
jedna strona wychodzi bardziej przysmażona. Rozważa się więc wersję problemu
sortowania naleśników tak, aby wszystkie były zwrócone przysmażoną stroną
w dół, ale o tym innym razem.

Genetyka w czwartym wymiarze
Dziś będzie o nukleomie. Wiem, sprawa jest niewesoła. Kiedy zacznie się
mówić o genetyce, zasób potrzebnych słów może zniechęcić nawet najbardziej
wytrwałych słuchaczy. Nazwy cząsteczek (np. DNA, RNA) i konkretnych
struktur komórkowych (np. nukleosom, chromosom, jądro komórkowe) plączą
się ze słowami określającymi pojęcia abstrakcyjne mówiące o funkcji (gen, kod
genetyczny, transkrypcja, translacja). Czas pędzi, a lista pojęć się wydłuża. Jak
za tym nadążyć?

Kiedy zaczęłam uczyć się o DNA, na czarnej tablicy rysowano nam geny. Długa
cienka kreska, na niej zaznaczone pudełeczko podpisane jakimś skrótem (np.
DIN7 ) oraz (czasami) dodane jeszcze dwa dużo mniejsze, z przodu i z tyłu.
Gdzieś na długiej nici DNA organizmu X znajduje się kawałek, nazwany genem
DIN7, który ma element rozpoznawany przez białka odczytujące informację
genetyczną (promotor) i miejsce, gdzie odczyt się kończy (terminator). Schludne
to i proste. Ale. . .

Przychodzi mi na myśl inny obraz: jądro komórkowe jako wielka plątanina
cienkich nitek, chaos, bałagan, DNA jak rozwinięte motki włóczek upchane
kolanem w szafce z materiałami do szydełkowania. I informacja, że gdyby te
wszystkie nitki DNA wyciągnąć z ludzkiej komórki, rozplątać i położyć jedna za
drugą, to mierzyłoby to wszystko 2 metry! DWA METRY!?

Pierwszy odczyt sekwencji ludzkiego genomu sprawę dodatkowo zagmatwał.
Wbrew oczekiwaniom – genów ludzkich jest jedynie około 30 tysięcy. Zaledwie
2% ludzkiego DNA koduje białka, a olbrzymia jego część to (wtedy tak
nazywany) „śmieciowy DNA”.

Aż nadszedł czas, kiedy ludzie zaczęli grzebać w tych „śmieciach”. I trzeba było
stworzyć dużo nowych pojęć. A gdzie nukleom?

W 2017 roku konsorcjum kilkunastu instytutów badawczych z USA oraz
kilku organizacji z reszty świata rozpoczęło projekt o nazwie „Nucleome 4D”.
Przedsięwzięcie potężne, bo wymagało nie tylko zebrania i analizy olbrzymiej
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ilości danych, ale także wykorzystania najnowszych różnorodnych technik,
fizycznych, genetycznych i biochemicznych oraz takich opartych na modelowaniu
matematycznym i AI. W grudniu 2025 roku w Nature ukazała się praca
opisująca pierwsze wyniki tego przedsięwzięcia.

Relatywnie mała liczba genów ludzkich oznaczała, że rozwój i działanie
organizmu ludzkiego nie jest wynikiem aktywności wielkiej liczby genów, a raczej
regulacji ich odczytu oraz proporcji ilościowych wielu białek. Te proporcje
rozłożone w czasie wpływają na kierunek rozwoju i działanie komórki, tkanki
i całego organizmu. Za tym musi stać precyzyjny system kontroli, hierarchiczna
struktura. Tego właśnie konsorcjum poszukiwało: jak w trzech wymiarach
wygląda DNA w jądrze komórkowym, jakie czynniki o tym decydują i jak
zmienia się to w czasie.

Praca z Nature odkrywa część tajemnicy tego systemu. DNA w jądrze
komórkowym to nie chaotyczna plątanina nici, ale precyzyjnie ułożona
przestrzennie dynamiczna struktura. Architekturę tej struktury utrzymują
białka. Samo jądro jest podzielone na strefy: w środku znajduje się centrum
aktywnego odczytu informacji genetycznej, a na obrzeżach znajdują się geny
mało aktywne, w większości zupełnie wyciszone. Nici DNA podzielone są na
domeny TAD (ang. Topologically Associating Domain), w jądrze komórkowym
jest ich około 2–3 tysiące. Każda domena funkcjonuje odrębnie, a ich granice
wyznacza przyłączone do DNA białko CTCF. W granicach danej domeny DNA
przyjmuje postać pętli. W całym jądrze odkryto ich około 140 tysięcy.

Powstają dzięki białku, które kształtem przypomina obrączkę. W jego otwór
wsuwa się DNA, pętla która się w ten sposób stwarza, może się wydłużać jak
pętelka sznurówki. „Obrączka” zbliża do siebie fizycznie dwa, czasami bardzo
odległe, fragmenty DNA. Jeśli jeden z nich jest włącznikiem genów, a drugi
zawiera gen – struktura spowoduje aktywację jego odczytu. Wyjaśnia to znane
przypadki chorób, kiedy mutacja je wywołująca nie znajduje się ani w genie
odpowiadającym za dany proces, ani w jego pobliżu.

U większości zdrowych ludzi plan budowy struktury 3D jest taki sam. Domeny TAD
są niemal identyczne u wszystkich. Z pętlami bywa różnie. Pewne kluczowe pętle
DNA również będą takie same, ponieważ zawierają tzw. „house keeping genes”,
geny odpowiedzialne za kluczowe procesy dla życia komórki i organizmu. Jednak
około 30% genomu tworzy różne osobniczo struktury 3D. Odkryto, że także u tej
samej osoby występują różnice, szczególnie wyraźne między komórkami różnych
tkanek. Zmieniająca się w czasie struktura 3D sprawia, że komórki uzyskują swój
charakterystyczny kształt i podejmują specyficzne funkcje.

Architektura 3D jest zatem hierarchiczna. Najniższy
poziom organizacji to pętle DNA, łączące „włącznik”
z genem, wpływając na aktywację genów. TAD-y
to oddzielone od siebie białkiem CTCF „dzielnice”
wewnątrz jądra rzadko kontaktujące się z sąsiednimi.
Jądro ma swoje przedziały: wewnętrzny, gdzie znajdują
się aktywne geny, oraz obrzeża, gdzie ciasno upakowany
DNA jest uśpiony. W końcu każdy z 46 chromosomów
zajmuje swoją własną, określoną „strefę” w jądrze.
Dzięki użyciu AI i modelowaniu matematycznemu
naukowcy mogą przewidzieć, jak zmienia się forma
przestrzenna DNA, na podstawie samej jego
sekwencji. Pozwala to zrozumieć, dlaczego mutacje
w „niekodujących” częściach DNA mogą prowadzić
do poważnych chorób, takich jak nowotwory czy
zaburzenia rozwojowe, poprzez „rozrywanie” lub błędne
tworzenie się tych pętli. Choroby te to np. białaczki,
chłoniaki, glejaki, w których aktywacji mogą ulec geny
związane z podziałami komórkowymi. Inne przypadki
to choroby genetyczne, jak zespół Cornelii de Lange,

w którym nieprawidłowo działa kohezyna, białko będące
„zszywaczem” trzymającym pętle DNA razem. Wiele
mutacji związanych z chorobami takimi jak cukrzyca
typu 2, choroba Crohna czy łuszczyca znajduje się
w miejscach niekodujących. W końcu okazuje się, że
niektóre wirusy po wejściu do jądra komórki całkowicie
reorganizują jego architekturę. Wiedza o tym, jak działa
nukleom w czterech wymiarach, pomoże w tworzeniu
nowych strategii terapeutycznych.

Gen jako kreska i pudełko. Wiedziałam, że to nie może
być takie proste. Ani tak chaotyczne jak spaghetti
w garnku. Ale teraz krajobraz jawi się rozległy i trudny
do pojęcia. A coś mi mówi, że to czubek góry lodowej.
No cóż, zobaczymy, co będzie dalej. . .
Artykuły:
1. „An integrated view of the structure and function of the

human 4D nucleome”, Dekker J. i wsp., Nature (2025), DOI:
10.1038/s41586-025-09890-3.

2. „The 4D nucleome project”, Dekker J. i wsp., Nature 549 (2017)
DOI: 10.1038/nature23884.

Marta FIKUS-KRYŃSKA
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O obwodach poliapezów
Piotr PIKUL** Wydział Matematyki i Informatyki UJ

W artykule O obwodach poliomin (zob. ∆8
22) wyprowadziliśmy jawny wzór na

minimalny obwód kształtu ułożonego z n kwadratowych kafelków (kwadratówZapis ⌈x⌉ oznacza najmniejszą liczbę
całkowitą nie mniejszą od x, czyli
⌈x⌉ − 1 < x ⩽ ⌈x⌉. Wartość ⌈x⌉ nazywa
się czasem sufitem liczby x.

jednostkowych), wynoszący 2 ⌈2
√

n⌉. Zapowiedzieliśmy wówczas, że po
tym łagodnym wprowadzeniu w metody szacowania obwodów zmierzymy
się z bardziej skomplikowanym przypadkiem kafelków trójkątnych. Słowa
dotrzymujemy i zapraszamy do lektury.
Na początku wypadałoby jeszcze wyjaśnić pochodzenie obecnego w tytule
terminu „poliapez”. Figury złożone z trójkątów równobocznych zwykło nazywać
się „poliamondami”, ponieważ po angielsku dwa trójkąty tworzą „di-amond”
(karo, ♢). Skoro jednak „diament” nie jest w Polsce zwyczajową nazwą rombu,
możemy nazywać konfiguracje trójkątów „poliapezami”, ponieważ trzy tworzą
„tr(i)-apez”.

Kształty ułożone z 1–5 trójkątów równobocznych, czyli monapez, diapez, triapez, 3 tetrapezy
i 4 pentapezy

Początkowe wartości ciągu minimalnych obwodów odpowiadających kolejnym
liczbom trójkątnych kafelków wynoszą: 3, 4, 5, 6, 7 i znowu 6 – z sześciu trójkątów
możemy ułożyć sześciokąt foremny. Oczywiście dla tak małej liczby pól
można ręcznie sprawdzać wszystkie układy, ale i tak warto się zastanowić,
dlaczego „nagle” obwód się zmniejsza. Albo inaczej: czy minimalny obwód 7
dla pięciu pól można wyznaczyć prościej? Można: z układem kafelków skojarzmy
graf odpowiadający temu, które pola posiadają wspólny bok. Zauważmy, że
najkrótszy cykl, jaki może w takim grafie wystąpić, ma długość 6, ponieważ
zawsze skręcamy o 60◦ i potrzebujemy co najmniej 6 takich zakrętów, aby
wykonać pełne okrążenie. Stąd pięć kafelków nie tworzy cyklu, a to prowadzi
do wniosku, że krawędzi w grafie jest co najwyżej k ⩽ n − 1 = 4. Obwód wynosi
zatem co najmniej 3n − 2k ⩾ 15 − 8 = 7 (od liczby wszystkich boków trójkątów
odejmujemy krawędzie styku).
Na siatce kwadratowej mieliśmy bardzo użyteczne pojęcie wypukłości, które
jednak nie przekłada się bezpośrednio na siatkę trójkątną. Łatwiej uogólnić
„prostokąt ograniczający” – przecięcie najwęższego poziomego i pionowego
pasa obejmującego poliomino. Na siatce trójkątnej musimy przeciąć trzy
najwęższe pasy, równoległe do odpowiednich linii siatki i zawierające dany
poliapez. W pierwszym odruchu można by nazwać taką otoczkę „sześciokątem
ograniczającym” poliapez, ale liczba boków powstałej figury może być mniejsza
od 6! Będziemy zatem używali określenia uwypuklenie poliapezu.
Zaznaczmy w tym miejscu, że dla uproszczenia zapisu w dalszych rozważaniach
długości w kierunkach siatki mierzone będą długościami boków jej „oczek”
(tzn. najmniejszych tworzonych przez nią trójkątów równobocznych), zaś

Przykładowy poliapez (oktapez) oraz jego
uwypuklenie. Przerywane linie oznaczają
brzegi minimalnych pasów. Zgodnie
z przedstawioną w tekście konwencją ten
poliapez ma obwód 10, pole 8,
a ograniczają go pasy o szerokościach 2, 4
i 3.

długości w kierunkach prostopadłych do linii siatki (szerokości pasów) mierzymy
wysokościami „oczek”. Oczywiście jednostką pola powierzchni będzie pole
pojedynczego „oczka” siatki.
Pokażemy teraz, że, podobnie jak dla kwadratowych kafelków, obwód poliapezu
jest ograniczony z dołu przez obwód jego uwypuklenia (na siatce kwadratowej
było to prawdą dla prostokąta ograniczającego). Bez straty ogólności załóżmy,
że badana figura jest spójna, tzn. że żaden rząd nie jest pusty. Jest bowiemRząd w poliapezie to jego część wspólna

z pasem o szerokości 1, w dowolnym
z trzech kierunków. jasne, że minimalizując obwód, niczego nie tracimy, gdy stykamy ze sobą

spójne składowe figury. Tym razem mamy jednak trzy kierunki wierszy/kolumn
(rzędów). Rozważmy więc promienie wychodzące z każdej jednostkowej krawędzi
uwypuklenia do jego wnętrza, w obu dostępnych kierunkach (trzeci jest
równoległy do krawędzi). W daną krawędź wyjściowego poliapezu mogą trafić co
najwyżej dwa promienie (zakładamy, że jest on nieprzezroczysty dla promieni),
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a liczba promieni to dwukrotność obwodu uwypuklenia. Stąd liczba wszystkich
krawędzi nie może być mniejsza od wspomnianego obwodu. Zauważmy, że
dla krawędzi poliapezu leżących na obwodzie jego uwypuklenia oba promienie
zaczynają się i kończą w tym samym punkcie.

Kolejny istotny fakt to stwierdzenie, że figura maksymalizująca pole przyCzytelnik Obeznany z Geometrycznym
Pojęciem Wypukłości może wykazać, że
poliapez jest wypukłym podzbiorem
płaszczyzny wtedy i tylko wtedy, gdy jest
równy swojemu uwypukleniu. Warto
zaznaczyć, że uwypuklenie nie jest
w ogólności tożsame z klasyczną otoczką
wypukłą.

danym obwodzie musi być wypukła (równa swojemu uwypukleniu), ponieważ
w przeciwnym wypadku moglibyśmy ją uwypuklić, nie zwiększając obwodu.
Formalnie ktoś mógłby zapytać: czy jeśli obwód się zmniejszy, to czy czegoś
nie zepsujemy. Minimalny obwód nie jest przecież rosnącą funkcją liczby pól,
więc może maksymalne pole nie musi rosnąć wraz z obwodem? Otóż okazuje
się, że w tę drugą stronę zależność musi być rosnąca, ponieważ zawsze możemy
dostawić jeden kafelek w taki sposób, aby zarówno pole, jak i obwód wzrosły o 1.Kto uważa, że to zwiększanie obwodu o 1

nie jest oczywiste, ma nie tylko rację, ale
i ćwiczenie do rozwiązania! Potencjalny spadek długości obwodu po uwypukleniu można zatem „odrobić”

przy dalszym powiększaniu figury.

Teraz zastanówmy się, jak duże pole może mieć poliapez o danym obwodzie.
Niech P◁(l) będzie maksymalnym polem poliapezu o danym obwodzie l ⩾ 3. Takie
maksymalne pole będzie dla nas dobrym punktem odniesienia w kontekście
wyjściowego problemu, gdyż jeśli przez O◁(n) oznaczymy minimalny obwód
poliapezu o polu n ⩾ 1, to zachodzi O◁(P◁(l)) = l, co teraz pokażemy. Ustalmy
l ⩾ 3 i niech S będzie wypukłym poliapezem o obwodzie l i polu P◁(l). Gdyby
istniał poliapez o obwodzie l′ < l i polu P◁(l), to jego uwypuklenie S′ miałoby
obwód mniejszy niż l i pole co najmniej P◁(l). Do wypukłego poliapezu zawsze
można dodać nowy rząd, zwiększając jego obwód o 1. Pozwala to powiększyć S′

do obwodu l, zwiększając przy tym jego pole ponad wartość P◁(l) – uzyskujemy
więc sprzeczność. Oznacza to, że faktycznie musi zachodzić O◁(P◁(l)) = l.

Ważną własnością takich maksymalnych poliapezów jest fakt, że ich szerokości
(chodzi o szerokości trzech pasów, których przecięciem jest dany poliapez) nie
mogą się różnić o więcej niż jeden. Gdyby bowiem wypukły poliapez miał
szerokości a ⩾ c ⩾ b oraz a ⩾ b + 2, to wówczas można by stworzyć poliapez
o szerokościach (a − 1, c, b + 1), który będzie miał większe pole, przy identycznym
obwodzie: do tej konstrukcji wystarczy odciąć jeden rząd przy brzegu pasa
o szerokości a oraz dołożyć rząd przy krawędzi pasa o szerokości b. Dalej,
ponieważ a − 1 > b, to można tak dobrać krawędzie pasów, aby się nie spotykały
nawet po odcięciu (nachodzenie na siebie pasów odcinanych i doklejanych

a

b

h
b− h+ 1

a−
h

Wypukły poliapez z odciętym
i doklejonym rzędem. Podane długości
rzędów odnoszą się do dłuższej podstawy
trapezu. Ich pole to dwukrotność długości
minus jeden.

skomplikowałoby porównywanie figur). Łatwo obliczyć, że długość odciętego
pasa jest mniejsza od długości fragmentu doklejanego, czyli procedura faktycznie
doprowadzi do zwiększenia pola figury.

Skoro wiemy, że maksymalne poliapezy mają szerokości różniące się co najwyżej
o 1, to kolejną istotną obserwacją będzie to, że osie pasów powinny przecinać
się możliwie blisko siebie. Ponieważ trzy liczby różnią się co najwyżej o 1,
przynajmniej dwie są równe, czyli możemy myśleć o naszym poliapezie jako
o wycinku rombu (części wspólnej dwóch pasów o szerokości m). Odcięliśmy od
niego trójkąty o nieujemnych wysokościach h1 oraz h2. Ponadto suma h1 + h2
jest stała. Figura składa się wówczas z 2m2 − (h2

1 + h2
2) pól. Łatwo sprawdzić, że

w takiej sytuacji suma kwadratów jest tym mniejsza, im mniejsza jest różnica
|h1 − h2|, która jest dwukrotnością odległości osi trzeciego pasa od środka rombu.
Jest to oczywiste, biorąc pod uwagę fakt, że w rombie im bliżej przekątnej, tym

h1

h2

m
m dłuższe rzędy. Pozwolimy sobie opuścić dowód algebraiczny tych obserwacji.

Ustalone dotąd własności maksymalnych poliapezów przy danym obwodzie
pozwalają już dla każdego l ∈ N wyznaczyć je jednoznacznie z dokładnością
do izometrii. Okazuje się, że przedstawienie liczby naturalnej jako sumy
trzech liczb różniących się o co najwyżej jeden jest jednoznaczne (kolejność
nas nie interesuje), a kształt maksymalnego poliapezu o takich szerokościach
również jest jednoznaczny. W zależności od reszty z dzielenia obwodu l
przez 6 otrzymujemy więc dokładne wartości P◁(l). Ponieważ nie rozważamy
wypukłych poliapezów o szerokości 0, wygodnie będzie oznaczać obwody jako
l = 6k − 5, 6k − 4, . . . , 6k − 1, 6k (ujemne reszty) dla k ⩾ 1.
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Na rysunkach pole każdego dużego trójkąta to k2, zaś zakolorowane trójkąty
oznaczają obszary nakryte dwoma równoległobokami o polu 2k.

l = 6k l = 6k − 1 l = 6k − 2 l = 6k − 3 l = 6k − 4 l = 6k − 5

2k, 2k, 2k 2k, 2k, 2k−1 2k, 2k−1, 2k−1 2k−1, 2k−1, 2k−1 2k−1, 2k−1, 2k−2 2k−1, 2k−2, 2k−2

Zauważmy, że po pomnożeniu pola przez 6 możemy je łatwo porównać
z kwadratem liczby l:

6P◁(6k) = 62k2 = (6k)2 > (6k − 1)2

6P◁(6k − 1) = 62k2 − 12k − 6 = (6k − 1)2 − 7 = (6k − 2)2 + 12k − 10
6P◁(6k − 2) = 62k2 − 2 · 12k = (6k − 2)2 − 4 = (6k − 3)2 + 12k − 9
6P◁(6k − 3) = 62k2 − 3 · 12k + 6 = (6k − 3)2 − 3 = (6k − 4)2 + 12k − 10
6P◁(6k − 4) = 62k2 − 4 · 12k + 12 = (6k − 4)2 − 4 = (6k − 5)2 + 12k − 13
6P◁(6k − 5) = 62k2 − 5 · 12k + 18 = (6k − 5)2 − 7 = (6k − 6)2 + 12k − 18

Zatem w każdym przypadku (l − 1)2 < 6P◁(l) ⩽ l2 (pamiętajmy, że l ⩾ 3; nie
istnieje poliapez o obwodzie 2). Po spierwiastkowaniu otrzymujemy nierówności
równoważne stwierdzeniu: l =

⌈√
6P◁(l)

⌉
. Jeśli dobierzemy takie l, że zachodzą

nierówności P◁(l − 1) < n ⩽ P◁(l), otrzymamy l − 1 ⩽
⌈√

6n
⌉
⩽ l. GdybyKorzystamy z monotoniczności

funkcji x 7→
⌈√

6x
⌉

O◁(n) < l, wówczas n ⩽ P◁(O◁(n)) ⩽ P◁(l − 1), gdzie pierwsza nierówność wynika
wprost z definicji P◁ i O◁, a druga z monotoniczności P◁. Przeczy to założeniu
P◁(l − 1) < n. Zatem zawsze zachodzi O◁(n) ⩾ l ⩾

⌈√
6n
⌉
. Zauważmy poza tym,

że obwód musi być tej samej parzystości co n, ponieważ wynosi 3n − 2s, gdzie
s to liczba wspólnych boków pól tworzących figurę. Stąd wniosek, że

O◁(n) ⩾ min
{

ℓ ∈ N : ℓ ⩾
√

6n i 2|(n − ℓ)
}

.

Okazuje się, że tak naprawdę zachodzi tu równość. Najpierw rozważmy
przypadek l =

⌈√
6n
⌉
. Gdy przyjrzymy się poprzednim rysunkom, zauważymy,

że kolejne maksymalne poliapezy różnią się jednym rzędem pól. Zabierając
kolejne komórki ze skrajnego rzędu maksymalnego poliapezu o obwodzie l, albo
zwiększamy obwód o 1 (jeśli zabrane komórki tworzą trapez, ew. zdegenerowany
do jednego trójkąta), albo go nie zmieniamy (gdy zabrane komórki tworzą
równoległobok). Zatem faktycznie, minimalny obwód będzie alternował
jednocześnie z parzystością n (stały być nie może) pomiędzy wartościami l a l + 1.
Niestety może się zdarzyć, że l =

⌈√
6n
⌉

+ 1. Zauważmy, że P◁(l − 1) + 1 ⩽ n,
zatem w takim przypadku 6P◁(l − 1) + 6 ⩽ 6n ⩽ (l − 1)2. Z trzeciej kolumny
wzorów odczytujemy, że może się tak zdarzyć tylko, gdy l przystaje modulo 6 do
1 lub 5, a ponadto musi być n = P◁(l − 1) + 1 = P◁(

⌈√
6n
⌉
) + 1. Uzyskanie pola n

(oraz właściwej parzystości obwodu!) z maksymalnego poliapezu o obwodzie
l − 1 =

⌈√
6n
⌉

jest zatem możliwe poprzez dodanie jednego trójkąta.

Wykazaną właśnie równość można opisać zwartym
wzorem:

O◁(n) = 2
⌈

n +
√

6n

2

⌉
− n.

Pokażemy bowiem, że dla liczby całkowitej k
i rzeczywistej x wartość w(k, x) = 2

⌈
k+x

2
⌉

− k to
najmniejsza liczba całkowita nie mniejsza od x o tej
samej parzystości co k. Wprost z definicji, parzystość
w(k, x) jest równa parzystości k, ponieważ sufit jest
zawsze liczbą całkowitą. Z kolei wiedząc, że ⌈y⌉ ⩾ y,
otrzymujemy

w(k, x) ⩾ k + x − k = x.

Druga nierówność, ⌈y⌉ < y + 1, dowodzi, że

w(k, x) < 2k + x + 2
2 − k = x + 2.

W otrzymanym przedziale leży dokładnie jedna
liczba całkowita o tej samej parzystości co k. Zatem
dowiedliśmy, że w(n,

√
6n) jest równe najmniejszej

liczbie całkowitej, większej od
√

6n, która jest tej samej
parzystości co n.

Po szczegółowym omówieniu siatki kwadratowej
i trójkątnej pozostaje wyznaczyć wzór na minimalny
obwód dla układów kafelków sześciokątnych. To zadanie
zostawimy już jednak jako ćwiczenie Czytelnikowi.
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Zadania z fizyki nr 812, 813 Termin nadsyłania rozwiązań: 30 IV 2026Klub 44 F
Redaguje Elżbieta ZAWISTOWSKA
812. Na drewnianą pochylnię tworzącą kąt α z poziomem wciągana jest za
pomocą sznurka skrzynia. Współczynnik tarcia skrzyni o pochylnię wynosi µ.
Pod jakim kątem do poziomu należy skierować sznurek, aby z najmniejszym
wysiłkiem wciągać skrzynię z zadanym przyspieszeniem a?
813. Dwie cząstki o masach m i M oraz ładunkach o jednakowych wartościach
bezwzględnych, ale przeciwnych znakach, poruszają się po okręgach pod
wpływem przyciągania elektrycznego. Wartość prędkości cząstki o masie m
momentalnie zwiększono, nie zmieniając przy tym kierunku prędkości. Ile razy
co najmniej wzrosła ta wartość, jeżeli w wyniku tego cząstki rozleciały się na
nieskończoną odległość od siebie?

Czołówka ligi zadaniowej Klub 44 F
po zakończeniu roku szkolnego 2024/25

i sprawdzeniu zadań
800 (WT = 2,55), 801 (WT = 2,25)

z numeru 6/2024
Jacek Konieczny Poznań 41,41
Jan Zambrzycki Białystok 4–39,07
Ryszard Woźniak Kraków 34,00
Andrzej Nowogrodzki Chocianów 3–32,28
Paweł Perkowski Ożarów Maz. 6–29,93
Krzysztof Zygan Lubin 26,89
Tomasz Wietecha Tarnów 18–21,64
Paweł Kubit Kraków 20,30
Marian Łupieżowiec Gliwice 3–14,49
Krzysztof Magiera Łosiów 4–13,42
Zbigniew Galias Kraków 1–12,77

Lista obejmuje uczestników ligi, których
stan konta wynosi przynajmniej
10 punktów i którzy przysłali rozwiązanie
co najmniej jednego zadania z rocznika
2023, 2024 lub 2025.

Rozwiązania zadań z numeru 10/2025
Przypominamy treść zadań:
804. Chłopiec znajduje się w punkcie A na brzegu rzeki, której
prędkość nurtu wynosi w (rys. 1). Chłopiec może biec po brzegu
z prędkością v i płynąć rzeką z prędkością u względem wody,
przy czym u < v. W jakiej odległości od punktu A znajduje się
na brzegu punkt C, z którego chłopiec powinien zacząć płynąć,
aby dotrzeć do punktu B w najkrótszym czasie? Odległość |BD|
punktu B od brzegu wynosi h, odległość |AD| jest równa l.
805. Para jednakowych małych kulek A i B połączonych
nieważką nicią o długości l zaczyna ześlizgiwać się z gładkiego
stołu o wysokości l, przy czym w chwili początkowej kulka B
znajduje się na wysokości h = 2l/3 nad podłogą (rys. 2). Po
dotknięciu podłogi kulka B przykleja się do niej, a kulka A
spada w tym momencie ze stołu. Od jakiej wysokości kulki A
nad podłogą nić będzie napięta?

A l D

h

B
w⃗

Rys. 1

x

B

A

h
l

Rys. 2

804. Posłużymy się analogią z załamaniem fali na granicy
dwóch ośrodków, co zgodnie z zasadą Fermata gwarantuje
minimum czasu dotarcia odpowiedniego promienia do
punktu B. Warunek dotarcia tego promienia do punktu B
zastąpimy warunkiem dotarcia odpowiedniego frontu
falowego do tego punktu. Najpierw rozważymy prostszy
przypadek nieruchomej wody, np. brzeg jeziora.

Przypadek w = 0 (rysunek poniżej):

α0 α0

.

.

A C0 D M

N

B
ut

uτ
h

Dany front falowy jest jednocześnie zbiorem punktów,
do których może dotrzeć chłopiec w zadanym czasie,
zaczynając płynąć z różnych punktów na brzegu.
Zaznaczony kolorem czerwonym front, docierający
do punktu B w minimalnym czasie t, odpowiada
promieniowi załamanemu w punkcie C0, który pokrywa
się z optymalną trajektorią chłopca AC0B.

Front falowy NM jest, zgodnie z zasadą Huygensa,
obwiednią fal kulistych wychodzących z różnych punktów
wejścia chłopca do wody na odcinku |AM | = vt, czyli
jest styczną do okręgu o promieniu ut i środku A
poprowadzoną z punktu M . Z trójkąta ANM mamy:

sin α0 = ut

vt
= u

v
= sin α0

sin 90◦ ,

zgodnie z prawem załamania. Ponieważ
htg∝0= hu/

√
v2 − u2, więc odległość punktu C0 od

punktu A wynosi:
|AC0| = |AD| − |C0D| = l − hu/

√
v2 − u2.

Przypadek w ̸= 0 (rysunek poniżej):

α αα

.

O A C1 CD M

N

B
ut

h
uτ

Skorzystamy z wyników dla nieruchomej wody
i uwzględnimy unoszenie z prądem rzeki względem
brzegu. Promień ut względem nieruchomej wody
musi wystartować z punktu O przesuniętego w lewo
względem punktu A o odcinek o długości |OA| = wt,
który pokonała woda w czasie t. Położenie punktu M
nie zmienia się, gdyż nie zależy od prędkości prądu
rzeki: |AM | = vt. Styczna MN wyznacza nachylenie
względem brzegu frontów falowych. Z trójkąta ONM
mamy sin α = u/(w + v). Front NM nie dociera
do punktu B w czasie t. Czyni to następny front,
zaznaczony kolorem czerwonym, nachylony do brzegu
pod tym samym kątem α. Temu frontowi odpowiada
optymalna trajektoria chłopca ACB względem brzegu,
zaznaczona kolorem czerwonym, oraz załamany
promień uτ , względem nieruchomej wody, wychodzący
z punktu C1. Punkt C1 jest przesunięty w prawo
względem C0, bo α < α0 . Punkt C jest przesunięty
w prawo względem C1 o odcinek |C1C| = wτ , który
pokonała woda w czasie płynięcia chłopca, τ . Ponieważ
|DC| = |C1C| − |C1D| = wτ − h tg α, a z trójkąta C1BD
mamy cos α = h/uτ , skąd czas płynięcia:

τ = h/(u cos α) = h(w + v)/
(
u
√

(w + v)2 − u2
)
,
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Liga zadaniowa Wydziału Matematyki, Informatyki i Mechaniki,
więc odległość punktu C od punktu A wynosi

|AC| = |AD| + |DC| = l + wτ − h tg α

= l + h(w2 − u2 + wv)/
(
u
√

(w + v)2 − u2
)
.

805. Zgodnie z zasadą zachowania energii prędkość
kulki A w chwili ześlizgiwania się ze stołu wynosi
(1) v0 =

√
2gl/3.

Po ześlizgnięciu się ze stołu kulka A porusza się po
paraboli, dopóki nić nie jest napięta. Wprowadzając
układ współrzędnych, jak na rysunku 2, możemy zapisać
współrzędne kulki w chwili t:
(2) x = v0t, y = l − gt2/2.

Nić ponownie stanie się naciągnięta, gdy odległość |BA|
zrówna się z długością nici:

x2 + y2 = l2.

Podstawiając współrzędne (2) i uwzględniając (1),
otrzymujemy równanie:

gt2 (gt2/4 − l/3
)

= 0.

Z niego znajdujemy chwilę czasu, w której nić ponownie
zostanie napięta: t2 = 4l/(3g) (pierwiastek t = 0 odpowiada
chwili ześlizgiwania się ciężarka A ze stołu). Korzystając
z drugiego z równań (2), otrzymujemy szukaną wysokość:

y = l/3.

Podsumowanie ligi zadaniowej Klub 44 F w roku szkolnym 2024/2025 po 801 zadaniach.

Zaskakująco wysoki okazał się współczynnik trudności
zadania 794 (W T = 3,7) z optyki falowej. Z soczewki
skupiającej wycięto wąski środkowy pasek, a pozostałe
części złożono ze sobą. Na osi optycznej przed soczewką
w odległości większej niż ogniskowa umieszczono punktowe
źródło światła monochromatycznego. Należało znaleźć
maksymalną liczbę prążków interferencyjnych, jaka może
powstać na ekranie za soczewką. Właściwe podejście do tego
zadania, czyli badanie interferencji światła z obrazów źródła
od dwóch części soczewki, zaprezentował jedynie Tomasz
Wietecha. Niestety zaraz na początku rozwiązania pomylił
(zapewne przez roztargnienie) promienie biegnące z różnych
części soczewki.
Drugie miejsce pod względem współczynnika trudności
zajęło zadanie 783 (W T = 3,45). Mała naładowana kulka,
zawieszona na nici w jednorodnym polu magnetycznym
skierowanym pionowo, została odchylona o mały kąt
z położenia równowagi i puszczona swobodnie. Należało
znaleźć czas, po którym płaszczyzna wahań obróci się
o kąt 2π. Wymagało to dość żmudnych rachunków.
W rozwiązaniu firmowym problem ten uproszczono,
korzystając z superpozycji rozwiązań liniowych. Konrad
Kapcia zauważył, że równania są analogiczne do równań
ruchu wahadła Foucaulta, i korzystając z zacytowanej
literatury na ten temat, otrzymał poprawny wynik. Tomasz
Wietecha samodzielnie rozwiązał te równania. Zmienił
wprawdzie warunki początkowe, co wpływa na kształt
trajektorii, jaką zakreśla kulka w płaszczyźnie poziomej,
ale nie zmienia wyniku zadania.
Zadanie 787 (W T = 3,25) z termodynamiki polegało na
znalezieniu stanu równowagi w izolowanym cieplnie naczyniu
wypełnionym helem i połączonym małymi otworkami
z dwiema objętościami również zawierającymi hel, w których
utrzymywano stałe ciśnienie i różne temperatury. Autorem
jedynego poprawnego rozwiązania jest Krzysztof Zygan.
Zadanie 792 (W T = 3,23) również wymagało zastosowania
metod statystycznych. W pionowym cylindrze zamkniętym
od góry tłokiem poruszały się chaotycznie kulki ze znaną
średnią prędkością kwadratową. Tłok zaczęto podnosić
z zadaną stałą prędkością i zatrzymano na dwa razy większej
wysokości. Należało znaleźć średnią prędkość ustaloną
po długim czasie, nie uwzględniając strat energii podczas
zderzeń oraz sił grawitacji. W pełni poprawne rozwiązanie
nadesłał Paweł Perkowski.
W zadaniu 799 (W T = 3,01) z elektromagnetyzmu elektron
krążył po orbicie kołowej w jednorodnym polu magnetycznym.
Indukcja pola magnetycznego wzrosła powoli trzy razy,

w czasie przewyższającym wielokrotnie okres obrotu. Należało
odpowiedzieć, ile zmienił się w tym czasie promień orbity.
Ponieważ zmiana pola była bardzo powolna, można było
przyjąć, że mimo zmiany pola magnetycznego, a co za
tym idzie prędkości i promienia, tor elektronu w czasie
jednego okresu pozostaje w przybliżeniu kołowy. Nie było
natomiast uzasadnione założenie, jakie przyjęła większość
autorów rozwiązań, że prędkość elektronu nie zmienia się.
Maksymalną ocenę za to zadanie otrzymał Krzysztof
Zygan, który skorzystał z faktu, że dipolowy moment
magnetyczny naładowanej cząstki w wolno zmieniającym
się polu magnetycznym jest zachowany (podał odnośnik do
literatury), i otrzymał poprawny wynik.

W zadaniu 785 (W T = 3,00) z elektrostatyki kondensator
płaski podłączony do źródła napięcia znajdował się
w jednorodnym polu elektrycznym, którego linie były
prostopadłe do okładek kondensatora. Trzeba było obliczyć
pracę, jaką należy wykonać, aby obrócić ten kondensator
o kąt π wokół osi prostopadłej do linii zewnętrznego pola
elektrycznego. Paweł Perkowski nadesłał rozwiązanie takie
jak firmowe, pozostali autorzy rozwiązali inne zadanie, gdy
kondensator nie jest podłączony do źródła.

Nikt nie rozwiązał do końca poprawnie zadania 784
(W T = 2,6) z optyki geometrycznej. Szklany pryzmat
o małym kącie łamiącym umieszczono w pewnej odległości
od soczewki skupiającej tak, że jedna z jego ścian była
prostopadła do osi optycznej soczewki. Po drugiej stronie
soczewki w jej ognisku umieszczono punktowe źródło światła.
Po przejściu światła przez soczewkę, odbiciu od ścianek
pryzmatu i ponownym przejściu przez soczewkę powstawały
dwa obrazy w znanej odległości od siebie. Należało znaleźć
współczynnik załamania szkła, z którego wykonano pryzmat.
Zadanie nie było trudne, ale autorzy rozwiązań ograniczyli
się do rozważenia jednego przypadku ustawienia pryzmatu,
gdy prostopadła do osi optycznej ścianka pryzmatu była
bliższa soczewki.

Paweł Perkowski jest autorem 9 rozwiązań, które uzyskały
maksymalną ocenę, drugie miejsce zajmuje Tomasz
Wietecha (7), trzecie Krzysztof Zygan (6).

W omawianym roku Tomasz Wietecha po raz
osiemnasty (!) przekroczył próg 44 punktów,
Konrad Kapcia po raz trzeci.

Cieszy, że dwaj panowie po paru latach przestoju odnowili
swój kontakt z Klubem 44 F, martwi śladowy udział
uczniów szkół średnich, mimo że rozwiązanie zdecydowanej
większości zadań nie wymaga zaawansowanej matematyki.
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Zadania z matematyki nr 915, 916 Termin nadsyłania rozwiązań: 30 IV 2026Klub 44 M

Lista uczestników ligi zadaniowej
Klub 44 M

po zakończeniu sezonu
(roku szkolnego) 2024/25

Szymon Kitowski – 43,92
Barbara Mroczek – 43,05
Andrzej Sudoł – 42,56
Andrzej Daniluk – 2–40,76
Mikołaj Znamierowski – 40,68
Marian Łupieżowiec – 1–38,54
Krzysztof Kamiński – 3–38,09
Roksana Słowik – 2–37,51
Michał Adamaszek – 9–37,30
Stanisław Bednarek – 3–37,24
Jędrzej Biedrzycki – 32,29
Błażej Żmija – 2–29,84
Mikołaj Pater – 4–29,79
Marcin Małogrosz – 4–27,82
Piotr Kumor – 16–27,28
Janusz Wojtal – 26,30
Janusz Fiett – 4–25,17
Tomasz Wietecha – 15–23,97
Maciej Mostowski – 1–22,90
Łukasz Merta – 3–22,87
Radosław Kujawa – 1–20,21
Andrzej Kurach – 4–20,01
Marek Prauza – 4–19,57
Norbert Porwol – 1–18,50
Paweł Łabędzki – 1–18,29
Grzegorz Karpowicz – 2–17,90
Janusz Olszewski – 25–17,53
Paweł Kubit – 8–17,31
Patryk Jaśniewski – 1–16,62
Paweł Najman – 9–16,42
Bartek Knapik – 13,39
Legenda (przykładowo): stan konta
9–37,30 oznacza, że uczestnik już
dziewięciokrotnie zdobył 44 punkty,
a w kolejnej (dziesiątej) rundzie ma
37,30 punktu.
Zestawienie obejmuje wszystkich
uczestników ligi, którzy spełniają
następujące dwa warunki:
– stan ich konta (w aktualnie
wykonywanej rundzie) wynosi co najmniej
13 punktów;
– przysłali rozwiązanie co najmniej
jednego zadania z rocznika 2023, 2024
lub 2025.
Nie drukujemy więc nazwisk tych
uczestników, którzy rozstali się z ligą trzy
lata temu (lub dawniej); oczywiście jeśli
ktokolwiek z nich zdecyduje się wrócić do
naszych matematycznych łamigłówek,
jego nazwisko automatycznie wróci na
listę. Serdecznie zapraszamy!

Redaguje Marcin E. KUCZMA

915. Funkcja parzysta f : R → R, z wartością f(0) = 0, ma w całym zbiorze R
ciągłą pochodną.
(a) Udowodnić, że jeśli f ma w punkcie 0 pochodną drugiego rzędu (skończoną),
to istnieją dwa przystające okręgi takie, że początek układu współrzędnych jest
jedynym punktem wspólnym wykresu funkcji f z każdym z tych okręgów.
(b) Podać przykład pokazujący, że bez założenia istnienia f ′′(0) teza części (a)
nie musi zachodzić.

916. Wzdłuż okręgu należy rozmieścić groszki w trzech różnych kolorach; mamy
k groszków jednego koloru, l groszków drugiego, m groszków trzeciego koloru.
Znaleźć warunek algebraiczny wiążący liczby k, l, m, konieczny i dostateczny na
to, by istniało rozmieszczenie, w którym żadne dwa groszki jednakowego koloru
nie sąsiadują.

Zadanie 916 zaproponował pan Paweł Kubit z Krakowa.

Rozwiązania zadań z numeru 10/2025

Przypominamy treść zadań:

907. Niech n będzie ustaloną liczbą naturalną; n ⩾ 3. Znaleźć największą liczbę naturalną m, dla
której istnieją różne liczby rzeczywiste x1, . . . , xm takie, że wartość wyrażenia

n∑
i=0

x
n−i
k x

i
l

jest jednakowa dla każdej pary różnych numerów k, l ∈ {1, . . . ,m}.

908. Wyznaczyć wszystkie liczby całkowite a ⩾ 1 o tej własności, że dla każdej liczby całkowitej
n ⩾ 1 suma 1 + a + . . . + an−1 jest liczbą trójkątną.

907. Oznaczmy tę wspólną wartość przez A. Mamy równość (xk − xl)A =
xn+1
k − xn+1

l , czyli xn+1
k − Axk = xn+1

l − Axl dla każdej pary k, l ∈ {1, . . . , m},
k ̸= l. To znaczy, że wyrażenie xn+1

k − Axk ma jednakową wartość dla
wszystkich k ∈ {1, . . . , m}. Oznaczmy ją przez C. Liczby x1, . . . , xm są więc
różnymi pierwiastkami wielomianu W (x) = xn+1 − Ax − C. Jego pochodna
W ′(x) = (n + 1)xn − A ma zatem co najmniej m − 1 różnych pierwiastków.

Gdy n jest liczbą parzystą, wielomian (n + 1)xn − A może mieć co najwyżej dwa
pierwiastki; stąd oszacowanie m ⩽ 3. Wartość m = 3 jest osiągalna (na wiele
sposobów); na przykład trójka liczb (x1, x2, x3) = (−1, 0, 1) spełnia postawiony
warunek (dla każdego parzystego n).

Gdy n jest liczbą nieparzystą, wielomian (n + 1)xn − A może mieć co najwyżej
jeden pierwiastek, więc m ⩽ 2; a dla m = 2 warunek zadania niczego nie żąda.
Stąd odpowiedź: szukane maksimum to m = 3 oraz m = 2 odpowiednio dla
parzystych i nieparzystych n.

908. Niech a będzie jedną z szukanych liczb; jasne,
że a > 1. Rozpatrzmy przypadek, gdy a − 1 ma dzielnik
pierwszy p > 2.
Weźmy dowolną liczbę q ∈ N, dla której kongruencja
x2 ≡ q (mod p) nie ma rozwiązania (wiadomo,
że niereszty kwadratowe istnieją). Niech
n =

( 1
2 (p + 1)

)3(q − 1). W myśl warunku zadania istnieje
liczba j ∈ N taka, że 1

2 j(j + 1) = 1 + a + . . . + an−1.
Skoro a ≡ 1, zatem 1

2 j(j + 1) ≡ n ≡
( 1

2
)3(q − 1) (mod p)

i po pomnożeniu przez 8:
4j(j + 1) ≡ q − 1, czyli q ≡ (2j + 1)2 (mod p),

wbrew wcześniejszemu wyborowi liczby q. Rozpatrywany
przypadek okazał się niemożliwy.
Pozostaje przypadek, gdy a = 2s + 1 dla pewnego
s ∈ N ∪ {0}. Warunek zadania (dla n = 3) żąda,

by 1 + a + a2 = 1
2 j(j + 1) dla pewnego j ∈ N. Po

podstawieniu a = 2s + 1 i prostym przekształceniu
dostajemy równanie

2s+1(2s + 3) = (j − 2)(j + 3).
Czynniki po prawej stronie są różnej parzystości,
więc jeden z nich dzieli się przez 2s+1; stąd (większy
z nich) j + 3 ⩾ 2s+1. Drugi jest wtedy dzielnikiem
liczby 2s + 3; stąd (mniejszy) j − 2 ⩽ 2s + 3. Uzyskane
dwustronne oszacowanie 2s+1 − 3 ⩽ j ⩽ 2s + 5 pociąga
nierówność 2s ⩽ 8. Dla s = 0, 1, 2 napisane równanie nie
jest spełnione dla żadnego j. To znaczy, że s = 3, czyli
a = 9. Dla a = 9 i dowolnego n suma dana w zadaniu
1 + 9 + . . . + 9n−1 = 1

8 (3n − 1)(3n + 1) jest liczbą
postaci 1

2 j(j + 1) dla j = 1
2 (3n − 1). Stąd odpowiedź:

a = 9 jest jedyną liczbą spełniającą postawiony warunek.
(Pomysł rozwiązania: Marcin Massalski).
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Liga zadaniowa Wydziału Matematyki, Informatyki i Mechaniki,
Podsumowanie ligi zadaniowej Klubu 44 M w roku szkolnym 2024/2025

Jak co roku – omówienie wybranych zadań, niekoniecznie o parametrach: współczynnikWeterani Klubu 44 M (w kolejności
uzyskiwania statusu Weterana):
J. Janowicz (8), P. Kamiński (5),
M. Gałecki (5), J. Uryga (4),
A. Pawłowski (4), D. Sowizdrzał,
T. Rawlik (6), M. Mazur, A. Bonk,
K. Serbin, J. Ciach (5), M. Prauza (4),
P. Kumor (16), P. Gadziński (7),
K. Jedziniak, J. Olszewski (25),
L. Skrzypek (4), H. Kornacki,
T. Wietecha (15), T. Józefczyk,
J. Witkowski (5), W. Bednorz,
B. Dyda (5), M. Peczarski,
M. Adamaszek (9), P. Kubit (8),
J. Cisło (18), W. Bednarek (10),
D. Kurpiel, P. Najman (9), M. Kieza (4),
M. Kasperski (6), K. Dorobisz,
A. Woryna (4), T. Tkocz, Z. Skalik (4),
A. Dzedzej, M. Miodek, M. Małogrosz (4),
K. Kamiński, J. Fiett (4),
M. Spychała (6), A. Kurach (4),
S. Bednarek, M. Pater (4), Ł. Merta
(jeśli uczestnik przekroczył barierę
44 punktów więcej niż trzy razy,
sygnalizuje to liczba w nawiasie).
Pozostali członkowie Klubu 44 M
(alfabetycznie):
„dwukrotni”: Z. Bartold, A. Czornik,
A. Daniluk, Z. Galias, Ł. Garncarek,
J. Garnek, A. Idzik, P. Jędrzejewicz,
G. Karpowicz, H. Kasprzak,
T. Komorowski, Z. Koza, J. Łazuka,
J. Małopolski, K. Maziarz, J. Mikuta,
E. Orzechowski, R. Pagacz, K. Patkowski,
K. Pióro, F. S. Sikorski, J. Siwy,
R. Słowik, S. Solecki, T. Warszawski,
P. Wiśniewski, G. Zakrzewski, K. Zygan,
B. Żmija;
„jednokrotni”: R. M. Ayoush,
T. Biegański, W. Boratyński, P. Burdzy,
T. Choczewski, M. Czerniakowska,
P. Duch, P. Figurny, M. Fiszer,
L. Gasiński, A. Gluza, T. Grzesiak,
K. Hryniewiecki, K. Jachacy,
M. Jastrzębski, P. Jaśniewski, A. Jóźwik,
J. Klisowski, J. Kraszewski,
A. Krzysztofowicz, R. Kujawa, T. Kulpa,
A. Langer, R. Latała, P. Lipiński,
P. Lizak, P. Łabędzki, M. Łupieżowiec,
W. Maciak, J. Mańdziuk, B. Marczak,
M. Marczak, M. Matlęga,
K. Matuszewski, R. Mazurek,
H. Mikołajczak, M. Mikucki, J. Milczarek,
R. Mitraszewski, K. Morawski,
M. Mostowski, W. Nadara, W. Olszewski,
R. Pikuła, B. Piotrowska, W. Pompe,
N. Porwol, M. Roman, M. Rotkiewicz,
A. Ruszel, Z. Sewartowski, A. Smolczyk,
P. Sobczak, Z. Surduka, T. Szymczyk,
W. Szymczyk, W. Tobiś, K. Trautman,
P. Wach, M. Warmuz, J. Węgrecki,
G. Wiączkowski, K. Witek, A. Wyrwa,
M. Zając, Z. Zaus, K. Zawisławski,
P. Żmijewski.

trudności (W T ) wysoki, liczba przysłanych rozwiązań (LP R) niewielka. Grono
uczestników, którzy regularnie przysyłają prace, jest niezwykle stabilne – i są to
w większości prace zdecydowanie dobre. Wpływ na wartości wspomnianych parametrów
jest oczywisty. Jedyne dwa zadania z wartością W T około 3 (ciekawostka: oba
geometryczne) zawdzięczają ów współczynnik zadaniom im towarzyszącym, może
nadmiernie łatwym.

W e-wydaniu, jak zwykle, znajdziemy niektóre prace uczestników oraz ciekawe
komentarze (zakładka: „Załącznik do elektronicznego omówienia ligi matematycznej”).

∗ ∗ ∗

Zadanie 887. [A, B ∈ R : ∃u, v, w ∈ C : |u| = |v| = |w| = 1 = uvw, u + v + w = A + Bi;
min A =?] (W T = 1,69; LP R = 16). Zadanie nietrudne, sporo dobrych rozwiązań. Ale –
uwaga – przy zliczaniu LP R nie zostały uwzględnione prace, w których zagadnienie
zostało sprowadzone do szukania minimalnej wartości pewnej funkcji dwóch zmiennych
rzeczywistych przez obliczenie pochodnych cząstkowych i przyrównanie ich (obu) do
zera (czyli wyznaczenie punktów krytycznych badanej funkcji) – i pochopna konkluzja,
że najmniejsza z wartości w znalezionych punktach to szukane minimum funkcji.
W sytuacjach, jakie wynikły w tym zadaniu, uzasadnienie poprawności konkluzji jest
łatwe – niemniej niezbędne; jego brak to znacząca usterka.

[Dygresja – pytanie ukazujące potrzebę ostrożności przy podobnych rozumowaniach.
Niech np. D = {(x, y) : x ⩾ 0, y ⩾ 0}. Załóżmy, że funkcja f : D → R jest ciągła
w całym zbiorze D, ma ciągłe pochodne cząstkowe w punktach wewnętrznych,
a najmniejsza z jej wartości w punktach krytycznych wynosi m; ponadto w punktach
brzegu zbioru D przyjmuje tylko wartości ⩾ m oraz jej wartości wzdłuż każdej
półprostej (zawartej w D) dążą do granicy ⩾ m. Czy stąd wynika, że m jest jej
najmniejszą wartością? Jako odpowiedź na to pytanie niech posłuży przykład:
f(x, y) = x5 − x3y − x2y + y2.]

Zadanie 893. [A, B, C, D, E (kolejno) na prostej, CA = CE, CB = CD; K, L po
jednej jej stronie; kąty ostre: ?KAB + ?KBA + ?LDE + ?LED = 180◦;
KB ∩ LD = {N}, AK ∩ EL = {M}; MN ⊥ AE; odcinek MN przecina KL
⇒ CK = CL] (W T = 3,25; LP R = 9). Większość rozwiązań (M. Adamaszek,
A. Kurach, J. Olszewski, M. Pater, M. Znamierowski), podobnie jak firmowe,
polegała na wprowadzeniu punktu uzupełniającego trójkąt AKE (lub ALE) do
równoległoboku. Marek Spychała – nieco inaczej, oryginalnie: z założeń wynikają
równości AB = DE, ?AKB + ?DLE = 180◦, a z nich wnioski: czworokąt KMLN
jest cykliczny; okręgi (AKB) i (DLE) mają równe promienie (tw. sinusów); ich
środki U i V leżą po przeciwnych stronach prostej AE; trójkąty AUB i DV E są
przystające. Symetria względem punktu C, która zamienia punkty A i E oraz
punkty B i D, zamienia także punkty U i V . Tak więc C jest środkiem odcinka UV .
Oznaczmy: ?KMN = α, ?LMN = β; skoro MN ⊥ AB, zatem ?BAK = 90◦ − α,
skąd ?UKN = 1

2 (180◦ − 2?BAK) = α. Dalej ?NKL = β (okrąg KLMN);
?UKL = ?UKN + ?NKL = α + β. Analogicznie ?V LK = β + α. Wobec tego
czworokąt UKLV jest trapezem równoramiennym. Punkt C jest środkiem jego
podstawy UV ; stąd teza: CK = CL.

Dość podobnie, zgrabnie: Barbara Mroczek (→ e-wydanie).
Ponadto dwa rozwiązania rachunkowe (T. Wietecha,
P. Wiśniewski).

ED

A B

α β

U

V

K

M

L

C

N

Zadanie 896. [An = 1
n

∑2n

k=1
1
k

dla n ∈ N ⇒ ciąg (An)
maleje] (W T = 1,65; LP R = 21). Badanie ciągu o wyrazach
An = 1

n
H(2n), gdzie H(N) =

∑N

k=1
1
k

, wręcz zaprasza do
wejścia w język analizy (logarytmy, pochodne, całki) – i tak
wygląda większość rozwiązań (w tym i „firmówka”. . . ).
A nie lepiej na poziomie gimnazjum? Popatrzmy (Janusz
Olszewski):

H(2n+1) − H(2n) = 1
2n+1 + . . . + 1

2n+1 < 1
(bo suma po prawej stronie ma 2n składników, każdy < 2−n).
Podstawiając H(2n) = nAn, dostajemy nierówność
0 > (n + 1)An+1 − nAn − 1 = (n + 1)(An+1 − 1) − n(An − 1) >

> n(An+1 − 1) − n(An − 1),
czyli An+1 − 1 < An − 1: teza!

Autor zadania (Jerzy Cisło) też zaproponował rozwiązanie
w podobnym stylu; i nikt ponadto spośród uczestników.
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Odnotujmy jeszcze podejście „erudycyjne”, wykorzystujące
twierdzenie Younga:
(Y ) H(n) = γ + ln n + 1

2(n+θn) , 0 < θn < 1
(γ – stała Eulera); aby uzyskać tezę zadania
(n + 1)H(2n) > nH(2n+1), wystarczy pokazać, że

(n + 1)
(
γ + ln 2n + 1

2(2n+1)

)
> n
(
γ + ln 2n+1 + 1

2·2n+1

)
,

czyli że 2γ > n
2n+1 − n+1

2n+1 , a to oczywiste, bo
prawa strona ujemna. Jednak twierdzenie (Y ) jest
mało znane i niełatwo dostępne (Google wyrzuca
kilka innych twierdzeń Younga). Tomasz Wietecha
znalazł w pracy arxiv.org/pdf/2204.09226 wynik:
H(n) = γ + ln n + 1

2n
− 1

12n2 + ϵn, 0 < ϵn < 1
4n3 , z którego

nierówność dwustronna (Y ) daje się niezbyt trudno
wyprowadzić. Jeszcze jeden z uczestników w ten sam sposób
wyprowadził tezę zadania z nierówności (Y ), jednak nie
podając ani jej dowodu, ani żadnego odsyłacza.

Zadanie 897. [ABCD – czworokąt wypukły; obwód p,
przekątne m, n; ABCE – równoległobok ⇒ DE ⩽ p − m − n]
(W T = 2,97; LP R = 10). Traktując punkty jako liczby
zespolone i oznaczając A − B = x, B − C = y, C − D = z,
rozwiązanie firmowe sprowadzało tezę zadania do nierówności

|x| + |y| + |z| + |x + y + z| ⩾ |x + y| + |y + z| + |z + x|
(dalej dając jej dowód). Redaktor Ligi nie miał świadomości
– jaką mieli liczni uczestnicy – że ta nierówność jest dość
dobrze znana jako Hlawka inequality (lub: Hornisch–Hlawka)
i zachodzi nie tylko dla liczb x, y, z ∈ C, ale dla dowolnych
wektorów w przestrzeni liniowej unormowanej, z normą
określoną przez iloczyn skalarny. Jak wielokrotnie bywało,
popis erudycji dał Piotr Kumor; całość jego pracy
w e-wydaniu – znajdziemy tam obszerne rozważania,

odsyłacze do literatury (nawet reprodukcje fragmentów prac),
dyskusje przypadków równości, kwestie istotności założeń
(w różnych wariantach twierdzenia) itp. Janusz Olszewski
(→ e-wydanie) przysłał trzy sposoby, w tym odsyłacz do
Hlawki (z komentarzem).

Zadanie 900. [f1, f2, f3, f4 – wielomiany rzeczywiste;
f1 ⩽ f2 ⩽ f3 ⩽ f4 w [0, 1]; f2 ⩽ f4 ⩽ f1 ⩽ f3 w [−1, 0] ⇒
f1 = f2 = f3 = f4] (W T = 1,56; LP R = 16). Znów: podejście
typowe – przez porównanie relacji asymptotycznych (przy 0)
funkcji fi – ustępowało prostotą wykorzystaniu zwykłej
szkolnej algebry: wyrazy wolne ai = fi(0) spełniają warunki
a1 ⩽ a2 ⩽ a3 ⩽ a4 oraz a2 ⩽ a4 ⩽ a1 ⩽ a3, więc są równe
(oznaczmy ich wspólną wartość przez a); zatem istnieją
wielomiany gi takie, że fi(x) = a + xgi(x) (i = 1, 2, 3, 4);
w przedziale (0, 1] spełniają one nierówności takie jak
funkcje fi, zaś w [−1, 0) – przeciwne; stąd ich wyrazy
wolne bi = gi(0) spełniają warunki b1 ⩽ b2 ⩽ b3 ⩽ b4 oraz
b3 ⩽ b1 ⩽ b4 ⩽ b2, więc są równe (wspólna wartość b);
i dalej: istnieją wielomiany hi takie, że gi(x) = b + xhi(x),
spełniające w przedziale (0, 1] nierówności takie jak gi, zaś
w [−1, 0) przeciwne, czyli takie jak fi, wobec czego wartości
ci = hi(0) spełniają warunki takie jak ai, więc znów są równe;
pozostaje zauważyć, że bi to wpółczynniki wielomianów fi

przy x; dalej: ci to wpółczynniki fi przy x2; kontynuując to
rozumowanie (indukcja), wykazujemy, że w wielomianach fi

współczynniki przy zmiennej w jednakowej potędze są równe,
co oznacza, że te wielomiany są równe.

Obie metody były reprezentowane w przysłanych pracach;
ta pierwsza (przez asymptotykę) bardziej licznie; ciężko
dokładnie ocenić, bo niektóre rozwiązania zawierały elementy
jednej i drugiej metody.

Zadanie 902. [Dla n ∈ N: w(n) = max{w : 10−wn! ∈ N}, 10−w(n)n! =: f(n) =⇒
∀m ∈ N : f(5m) ≡ 2m (mod 5)] (W T = 1,90; LP R = 18). Przez dość długi czas nie
mogliśmy się zdecydować, czy chcemy włączyć to zadanie do Ligi. Przecież ostatnia
niezerowa cyfra liczby n! to hasło często spotykane – musi być w sieci. I jest – tylko że
wszystko, co wyskakuje, to proste przykłady, dla konkretnych wartości n – nie ogólne
twierdzenie, które byłoby tu przydatne; trzeba poszperać głębiej. Paweł Kubit, jako
jedyny, dotarł do formuły

L(n!) = LD(2aL(a!)L(b!)) dla n = 5a + b,

w której LD(m) to ostatnia cyfra liczby m; L(n!) to LD(f(n)) (gdzie f to funkcja
z zadania). Podał dwa źródła, z których jedno nie zawiera dowodu (tylko przykłady),
zaś drugie www.geeksforgeeks.org/dsa/last-non-zero-digit-factorial odsyła do
kolejnego materiału, w którym faktycznie jest dowód (formuły nawet bardziej ogólnej),
wszelako ciężki do przebrnięcia – tę ścieżkę (wraz z wyjaśnieniem, jak owa formuła
prowadzi do tezy naszego zadania) proponujemy entuzjastom. Jednak prościej jest
zwyczajnie zrobić zadanie – niezbyt przecież trudne (jak wskazuje wartość LP R).

Wszyscy pozostali uczestnicy przysłali prace różniące się w detalach, ale bazujące na
jednej koncepcji, by w iloczynie definiującym n! wydzielić wszystkie potęgi piątki,
a pozostałe czynniki pogrupować w bloki czteroelementowe. Jedyna trudność polegała
na tym, jak tu zgrabnie zapisać rozumowanie, które w myśli jawi się jako całkiem
jasne. Szczyt zwięzłości, przy jednoczesnej klarowności przekazu, osiągnął Jerzy Cisło
(→ e-wydanie)!

Skrót regulaminu
Każdy może nadsyłać rozwiązania zadań z numeru n w terminie
do końca miesiąca n + 2. Szkice rozwiązań zamieszczamy
w numerze n + 4. Można nadsyłać rozwiązania czterech, trzech,
dwóch lub jednego zadania (każde na oddzielnej kartce), można to
robić co miesiąc lub z dowolnymi przerwami. Rozwiązania zadań
z matematyki i z fizyki należy przesyłać w oddzielnych kopertach,
umieszczając na kopercie dopisek: Klub 44 M lub Klub 44 F.
Można je przesyłać również pocztą elektroniczną pod adresem
delta@mimuw.edu.pl (preferujemy pliki pdf). Oceniamy zadania
w skali od 0 do 1 z dokładnością do 0,1. Ocenę mnożymy przez

współczynnik trudności danego zadania: WT = 4 − 3S/N , przy czym
S oznacza sumę ocen za rozwiązania tego zadania, a N – liczbę
osób, które nadesłały rozwiązanie choćby jednego zadania z danego
numeru w danej konkurencji (M lub F) – i tyle punktów otrzymuje
nadsyłający. Po zgromadzeniu 44 punktów, w dowolnym czasie
i w którejkolwiek z dwóch konkurencji (M lub F), zostaje on członkiem
Klubu 44, a nadwyżka punktów jest zaliczana do ponownego udziału.
Trzykrotne członkostwo – to tytuł Weterana. Szczegółowy regulamin
został wydrukowany w numerze 2/2002 oraz znajduje się na stronie
deltami.edu.pl.
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Prosto z nieba: Sześć miliardów ton na sekundę
Żyjemy w złotej erze astronomii. Serio! Czasami trudno
nam uwierzyć, że dopiero 30 lat temu odkryliśmy
pierwszą planetę krążącą wokół gwiazdy podobnej
do Słońca. W 2022 roku mieliśmy ich już 5 tysięcy,
a w zeszłym roku oficjalna liczba potwierdzonych
obserwacji planet pozasłonecznych osiągnęła 6 tysięcy,
podczas gdy kolejne tysiące kandydatów czekają
w kolejce na obserwacje. Każda odkryta planeta pozwala
naukowcom dowiedzieć się więcej o warunkach, w jakich
powstają, oraz o tym, gdzie ich szukać.
Oczywiście w tym czasie nie obyło się bez niespodzianek.
Odkryliśmy obiekty, które odbiegają od naszego
standardowego rozumienia tego, czym jest planeta
i gdzie powinna się znajdować. Na przykład odkryliśmy
planety swobodne, czyli takie, które przemierzają
przestrzeń kosmiczną samotnie, nie orbitując wokół

żadnej gwiazdy. Naukowcy szacują, że w naszej
Galaktyce takich planet może być około dwa razy więcej
niż gwiazd! Ich pochodzenie wciąż pozostaje zagadką:
czy są to obiekty, które powstały podobnie jak gwiazdy,
poprzez zapadnięcie się chmur pyłu i gazu? Czy też są
to planety wyrzucone ze swoich rodzimych układów
gwiazdowych?
W tym artykule używam określenia swobodna planeta. Jest to
luźne tłumaczenie wielu angielskich nazw odnoszących się do tych
obiektów (np. rouge planet, free floating planet etc.). Nazwa
stosowana w literaturze naukowej to swobodnie dryfujący obiekt
o masie planetarnej (ang. Free-floating Planetary-mass Object).
O swobodnych, bezgwiezdnych planetach pisałam w ∆2

24.

Możliwe, że właśnie odrobinę zbliżyliśmy się do
odpowiedzi na to pytanie dzięki swobodnej planecie
o uroczej nazwie Cha 1107-7626. Dla tej konkretnej
planety odpowiedź brzmi: powstaje jak gwiazda.

Wizja artystyczna planety Cha 1107-7626. Znajduje się ona w odległości około 620 lat świetlnych
od Ziemi, jest około 5–10 razy masywniejsza od Jowisza i nie orbituje wokół żadnej gwiazdy.
Źródło: ESO/L. Calcada/M. Kornmesser

Cha 1107-7626 to planeta, którą obserwujemy
w momencie formowania się jej wewnątrz chmury
gazu i pyłu. Otaczający planetę materiał nieustannie
opada na nią pod wpływem siły grawitacji (w procesie
zwanym akrecją). W rezultacie wokół planety powstaje
dysk materii, który wirując, nagrzewa się do wysokich
temperatur, i w efekcie emituje światło. To światło
jesteśmy w stanie rejestrować za pomocą teleskopów.
W przypadku tej planety jednak zaobserwowano coś
zaskakującego – szybkość opadania materii na planetę
nie jest stała, ale zwiększa się w zastraszającym tempie.
W sierpniu 2025 roku zmierzono, że planeta zasysa
otaczającą ją materię z prędkością sześciu miliardów
ton na sekundę! Około osiem razy szybciej niż kilka
miesięcy wcześniej. Jest to najsilniejszy epizod akrecji,
jaki kiedykolwiek odnotowano dla obiektu o masie
planetarnej.
Obserwacje przeprowadzono za pomocą spektrografu X-shooter
zainstalowanego na Bardzo Dużm Teleskopie (Very Large telescope,
VLT) należącym do Europejskiego Obserwatorium Południowego
(European Southern Observatory, ESO), znajdującym się na pustyni
Atacama w Chile. Zespół wykorzystał również dane z teleskopu
kosmicznego Jamesa Webba, obsługiwanego przez agencje kosmiczne
Stanów Zjednoczonych, Europy i Kanady, oraz dane archiwalne ze
spektrografu SINFONI, zainstalowanego na teleskopie VLT należącym
do ESO.

Granica pomiędzy sposobem, w jaki powstają gwiazdy,
oraz tym, jak powstaje swobodna planeta Cha 1107-7626,
zaciera się jeszcze bardziej, gdy przyjrzymy się
dokładniej zmianom tempa opadania materii na

planetę w czasie. Porównując światło emitowane
przed i podczas dramatycznego wzrostu tempa akrecji,
astronomowie zebrali wskazówki dotyczące natury tego
procesu. Wyniki wskazują, że za napędzanie tempa
akrecji jest odpowiedzialne zaskakująco silne pole
magnetyczne planety – zjawisko wcześniej obserwowane
tylko w przypadku gwiazd. Ale to nie wszystko, skład
chemiczny materii wokół planety zmienia się w czasie.
W dysku akrecyjnym wykryto na przykład parę wodną,
której tam nie było kilka miesięcy wcześniej. I tutaj znów
można się domyślić, że takie zjawisko zaobserwowano do
tej pory tylko w czasie powstawania gwiazd, ale nigdy
dla żadnej powstającej planety.

Jedno można powiedzieć na pewno, Cha 1107-7626
zaintrygowała naukowców. Sposób, w jaki powstaje,
bardzo różni się od tego, jak powstała nasza własna
planeta. Jak to ujęła Amelia Bayo, współautorka
publikacji opisującej badania: „Pomysł, że obiekt
planetarny może zachowywać się jak gwiazda, budzi
podziw i skłania nas do zastanowienia się, jak mogą
wyglądać światy poza naszym własnym”. No cóż,
pozostaje nam tylko podziwiać dalej!
Napisane na podstawie publikacji V. Almendros-Abad et al. “Discovery
of an Accretion Burst in a Free-Floating Planetary-Mass Object”, The
Astrophysical Journal Letters 992 L2 (2025).

Anna DURKALEC
Zakład Astrofizyki, Departament Badań Podstawowych,

Narodowe Centrum Badań Jądrowych
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Niebo w lutym
Luty jest najkrótszym miesiącem roku, Słońce szybko jednak wspina się na
niebie i przez cały miesiąc zwiększy ono wysokość górowania o ponad 9◦.
Wyraźnie wzrośnie też jego czas przebywania nad widnokręgiem, do prawie
11 godzin.

Podobnie jak w styczniu, teraz też Księżyc zdominuje początek miesiąca. Pełnia
Srebrnego Globu przypada w nocy z 1 na 2 lutego na tle gwiazdozbioru Raka,
4◦ na wschód od jasnej gromady otwartej gwiazd M44. Oczywiście zginie
ona w blasku Księżyca, ale jeśli ktoś jeszcze nie umie jej odnaleźć, to warto
zapamiętać położenie Księżyca tej nocy względem Regulusa w Lwie z jednej
strony oraz Kastorem i Polluksem w Bliźniętach z drugiej i powrócić w ten
rejon nieba za tydzień. M44 znajduje się prawie w połowie odległości między
wspomnianymi gwiazdami, nieco bliżej Bliźniąt i na ciemnym niebie widoczna
jest gołym okiem jako mgiełka, a w lornetce rozpada się na pojedyncze gwiazdy.

Następnej nocy Księżyc zawita do Lwa, wschodząc
5◦ na północny zachód od Regulusa, najjaśniejszej
gwiazdy tej konstelacji. Około godziny 5 dystans między
tymi ciałami niebieskimi zmniejszy się do 0,5◦. W nocy
z 6 na 7 lutego Srebrny Glob w fazie 72% zbliży się do
Spiki, najjaśniejszej gwiazdy Panny, zmniejszając nad
ranem dystans doń do 3◦. Dwie noce później natomiast
nastąpi ostatnia kwadra Księżyca na tle gwiazdozbioru
Wagi 6◦ na południe od Zuben Elgenubi, drugiej co do
jasności gwiazdy tej konstelacji, choć na mapach nieba
oznaczana jest grecką literą α.

Przełom zimy i wiosny oznacza niskie nachylenie
ekliptyki do porannego horyzontu i wysokie do
wieczornego. Wpłynie to mocno na widoczność
naturalnego satelity Ziemi po ostatniej kwadrze,
szczególnie że przebywa on wtedy na południe od
ekliptyki, co dodatkowo obniża jego wysokość nad
widnokręgiem o kilka stopni. Warto tutaj wspomnieć
o spotkaniu Księżyca w fazie 35% z Antaresem,
najjaśniejszą gwiazdą Skorpiona. 11 lutego oba ciała
niebieskie pojawią się na nieboskłonie około godziny 3:30
w odległości 1,5◦ od siebie.

Nów Księżyca przypada 17 lutego i zostanie on
okraszony obrączkowym zaćmieniem Słońca, widocznym
niestety jedynie z Antarktydy. Po nowiu Srebrny
Glob przeniesie się na niebo wieczorne, gdzie bardzo
cienki sierp Księżyca można próbować dostrzec już
18 lutego. Pół godziny po zachodzie Słońca zajmie on
pozycję na wysokości 7◦, prezentując tarczę w fazie
niecałych 2%. Planeta Merkury pokaże się 4◦ nad nim,
w podobnej odległości, ale pod nim zorzę wieczorną
przebije planeta Wenus. Oczywiście Wenus jest dużo
jaśniejsza, jej blask wyniesie −3,9m, Merkury natomiast
świeci blaskiem −0,6m.

Pierwsza planeta od Słońca maksymalną elongację nieco
ponad 18◦ osiągnie 19 lutego i zacznie pojawiać się na
lewo od punktu W widnokręgu od drugiego tygodnia
miesiąca. W dniu maksymalnej elongacji, około godziny 18
planeta zajmie pozycję na wysokości 7◦. Jak zawsze
podczas widoczności wieczornej planety wewnętrzne dążą
od koniunkcji górnej do dolnej, a zatem ich tarcze rosną,
a fazy maleją. W przypadku Merkurego spada również

jego jasność. Przez trzy tygodnie tarcza Merkurego
urośnie od 5′′ do 10′′, faza jego tarczy spadnie od 88% do
12%, blask natomiast zmniejszy się od −1m do +1,9m.

Drugą z planet wewnętrznych można próbować dostrzec
nisko nad wspomnianą wcześniej częścią widnokręgu
od połowy lutego. Do końca miesiąca w momencie
zachodu Słońca wzniesie się ona na wysokość 10◦. Od
marca do czerwca planeta rozgości się jednak na niebie
wieczornym. W lutym Wenus jest daleko od nas i jej
wygląd prawie się nie zmienia. Planeta świeci blaskiem
−3,9m, przy średnicy tarczy 10′′ i fazie 88%. Do końca
miesiąca dystans między planetami zmniejszy się od 8◦

do 4◦.

19 lutego Księżyc zwiększy fazę do 5%, zbliżając się
na 5◦ do planety Saturn, która świeci blaskiem +1m,
przy średnicy tarczy 16′′. Warunki widoczności Saturna
szybko się pogarszają, i na początku marca zginie on
w zorzy wieczornej. Niskie położenie nad widnokręgiem
sprawia, że obserwacje teleskopowe są trudne i pozostaje
tylko obserwacja gołym okiem.

24 dnia miesiąca przypada I kwadra Srebrnego Globu.
Do tego czasu zbliży się on do Plejad w Byku. Tym
razem Europa nie ma szczęścia i do ich zakrycia dojdzie,
gdy wraz z Księżycem są one u nas pod horyzontem.
24 lutego oba ciała zajdą tuż po północy, gdy przedzieli
je dystans 2◦. Wieczorem znajdą się one wysoko na
niebie, w okolicach południka lokalnego, ale już ponad 8◦

od siebie.

W dniach 26 i 27 lutego Księżyc zwiększy fazę do
około 80% i zajmie pozycję najpierw na pograniczu
gwiazdozbiorów Bliźniąt i Woźnicy, a następnie we
wschodniej części Bliźniąt. Pierwszej z wymienionych
nocy Księżyc przed swoim zachodem zmniejszy dystans
do Jowisza do poniżej 5◦. Drugiej nocy natomiast
Księżyc zbliży się na 3◦ do Polluksa, najjaśniejszej
gwiazdy Bliźniąt oraz zakryje świecącą blaskiem +3,6m
gwiazdę κ Gem. Gwiazda zniknie za księżycową tarczą
około godziny 23 i pojawi się ponownie godzinę później.
Jowisz powoli słabnie po styczniowej opozycji i do końca
miesiąca jego blask spadnie do −2,4m, przy średnicy
tarczy 43′′.

Ariel MAJCHER
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Rozwiązania zadań ze strony 5

Rozwiązanie zadania M 1843.
Jeśli n jest liczbą parzystą, tj. n = 2k, to pary

(1, 4k), (2, 4k − 1), . . . , (2k, 2k + 1)
spełniają warunki zadania, gdyż

(1 + 4k) · (2 + (4k − 1)) · . . . · (2k + (2k + 1)) = ((4k + 1)k)2.

Jeśli n jest liczbą nieparzystą, tj. n = 2k + 1, to użyjemy indukcji
matematycznej. Dla n = 3 mamy

(1 + 5)(2 + 4)(3 + 6) = 182.

Załóżmy zatem, że teza zachodzi dla n − 2 = 2k − 1 i połączyliśmy
już w pary liczby 1, 2, . . . , 4k − 2 tak, że iloczyn sum w parach jest
równy m2 dla pewnej liczby całkowitej m. Wtedy dokładając pary

(4k − 1, 4k + 2), (4k, 4k + 1),
dostajemy:

(4k − 1 + (4k + 2)) · (4k + (4k + 1)) · m2 = ((8k + 1)m)2.

Rozwiązanie zadania M 1844.
Odpowiedź: 40.

Udowodnimy, że na początku w każdym rzędzie lub kolumnie
znajdują się co najwyżej dwie mrówki, których pierwszy ruch
odbywa się w tym rzędzie lub kolumnie. Zatem całkowita liczba
mrówek na tablicy wynosi maksymalnie 2 · 10 + 2 · 10 = 40.

Rozpatrzmy standardowe kolorowanie szachowe naszej tablicy.
Załóżmy, że po pewnym rzędzie lub kolumnie poruszają się

3 mrówki. Na podstawie
zasady szufladkowej Dirichleta
dwie z nich muszą zajmować
pola tego samego koloru.
Jednakże wtedy te mrówki
muszą zająć to samo pole na
długo przed upływem godziny!

Rysunek obok pokazuje
spełniający warunki zadania
sposób rozmieszczenia
40 mrówek wraz z kierunkami
ich wędrówek.

Rozwiązanie zadania M 1845.
Odpowiedź: Tak.

Niech ABCD będzie czworościanem foremnym. Rozważmy trzy
płaszczyzny:

Σ1: równoległa do DAB, w odległości 3 od niej i po tej samej
stronie DAB co punkt C,

Σ2: równoległa do DBC, w odległości 4 od niej i po tej samej
stronie DBC co punkt A,

Σ3: równoległa do DCA, w odległości
√

21 od niej i po tej samej
stronie DCA co punkt B.

Niech O będzie punktem przecięcia się płaszczyzn Σ1, Σ2 i Σ3.
Rozpatrzmy sferę Ω o środku w punkcie O i promieniu 5. Weźmy
jeszcze punkty A′, B′, C′ odpowiednio na półprostych DA, DB, DC
tak, aby DA′ = DB′ = DC′ i płaszczyzna A′B′C′ była styczna do Ω.

Sfera Ω przetnie płaszczyznę DA′B′ wzdłuż okręgu o promieniu√
52 − 32 = 4, płaszczyznę DB′C′ wzdłuż okręgu o promieniu√
52 − 42 = 3, a płaszczyznę DC′A′ wzdłuż okręgu o promieniu√
52 −

√
212 = 2.

Przesuwamy teraz równolegle płaszczyznę A′B′C′ w kierunku D
aż do momentu, w którym O ∈ A′B′C′. Widzimy, że Ω przecina
A′B′C′ wzdłuż okręgu, którego promień może być dowolną liczbą
z przedziału (0, 5], w szczególności może być równy 1.

Rozwiązanie zadania F 1137.
W sytuacji, gdy na odizolowanej sondzie uruchamiamy szpulę
magnetofonu, układ pozostaje wolny od zewnętrznych momentów.
Całkowity moment pędu względem osi obrotu musi więc
pozostać stały. Jeśli przed włączeniem wszystko spoczywa, to
po uruchomieniu szpuli całkowity moment pędu nadal równy jest
zeru: moment pędu szpuli zostaje skompensowany przez przeciwny
moment pędu powolnego obrotu korpusu sondy.

Niech Is oznacza moment bezwładności korpusu sondy względem
danej osi, a Ir moment bezwładności szpuli (traktowanej jak
jednorodny walec, Ir = 1

2 mr2). Oznaczmy także przez ωr = 2π/T
prędkość kątową szpuli, gdzie T jest jej okresem obrotu. Z zasady
zachowania momentu pędu otrzymujemy natychmiast:

Is ωs + Ir ωr = 0 =⇒ ωs = −
Ir

Is
ωr.

W konsekwencji po czasie t kąt obrotu sondy wynosi:

∆φ = |ωs| t =
Ir

Is

2πt

T
=

mr2

Is

πt

T
.

Jeśli oś obrotu ma składową prostopadłą do kierunku patrzenia
kamery, ten kąt przekłada się bezpośrednio na ugięcie linii
celowania na niebie. Równoważne przesunięcie liniowe środka
tarczy Jowisza w rzucie na odległość D to (w przybliżeniu dla
małego kąta)

∆x = D ∆φ.

Po podstawieniu wartości liczbowych otrzymujemy:
∆φ = 8,82 · 10−4 rad = 0,0505◦ ≈ 182′′.

Dla odległości D = 5,7 · 105 km:
∆x = D ∆φ ≈ 500 km .

Uwaga: Jeżeli oś obrotu pokrywa się z osią optyczną kamery, obraz
jedynie obraca się w kadrze – bez przesunięcia środka tarczy.

Rozwiązanie zadania F 1138.
Rozważmy obraz interferencyjny powstały przez fale odbite od
górnej i dolnej powierzchni klina powietrznego. Fala odbita od
dolnej powierzchni ulega zmianie fazy o π, podczas gdy fala
odbita od górnej powierzchni nie. W miejscu, gdzie grubość klina
wynosi d, warunkiem na maksimum natężenia jest

2d =
(

m + 1
2

)
λ,

gdzie λ jest długością fali w powietrzu, a m jest liczbą całkowitą.
Zatem

d =
(2m + 1)λ

4
.

Z geometrii rysunku wynika, że

d = R −
√

R2 − r2,

gdzie R jest promieniem krzywizny soczewki, a r jest promieniem
pierścienia Newtona. Zatem

(2m + 1)λ
4

= R −
√

R2 − r2.

Skąd otrzymujemy:

r =

√
(2m + 1)Rλ

2
−

(2m + 1)2λ2

16
.

Jeśli R jest dużo większe od długości fali, pierwszy składnik
dominuje nad drugim i

r =

√
(2m + 1)Rλ

2
.

Wartości liczbowe to: r1 ≈ 1,44 mm, r2 ≈ 1,86 mm.

24



Punkty izogonalnie sprzężone
Bartłomiej BZDĘGA Uniwersytet im. A. Mickiewicza w Poznaniu

Przed przystąpieniem do lektury warto zapoznać się z trygonometrycznym86

O

A

B

X

Y

XA
YA

XB

YB

Rys. 1

A B

C

P1

P2
Q1

Q2

R1 R2

T1 T2

Rys. 2

Wskazówkidozadań

1.Wystarczyskorzystaćztwierdzenia1
dladwóchkątówtrójkąta.
2.Środekokręguopisanego
iortocentrumsąizogonalniesprzężone,
aichrzutyprostokątnenabokitrójkąta
tospodkiwysokościiśrodkiboków.
3.NiechKbędzieprzecięciem
symetralnejodcinkaABzprostąBC.
PunktyPiQsąizogonalniesprzężone
wtrójkącieKAC.
4.NiechK,L,Mbędąśrodkami
okręgówopisanychnatrójkątach,
odpowiednio,AHE,BDF,CGI.
ProsteKA,LB,MCsąwspółpękowe
(przecinająsięwśrodkujednokładności
trójkątówKLMiABC).Wystarczy
udowodnić,żeczewianytrójkątaKLM
zawartewsymetralnychodcinkówHE,
DF,GIsąizogonalniesprzężone,
wodpowiednichkątach,doczewianKA,
LB,MC.

twierdzeniem Cevy, do czego znakomicie nadaje się poprzedni kącik.

Rozważmy kąt wypukły AOB oraz punkty X i Y wewnątrz niego. Mówimy,
że proste OX i OY są izogonalnie sprzężone względem tego kąta, jeśli
|?AOX| = |?BOY | (lub równoważnie: |?AOY | = |?BOX|).

Twierdzenie 1. Rozważmy sytuację z pierwszego rysunku. Punkty XA i XB są
rzutami prostokątnymi punktu X na ramiona kąta AOB; analogicznie jest z YA
i YB. Wówczas proste OX i OY są izogonalnie sprzężone względem kąta AOB
wtedy i tylko wtedy, gdy na czworokącie XAYAYBXB można opisać okrąg.
W takiej sytuacji środkiem wspomnianego okręgu jest środek odcinka XY .

Dowód. Na czworokątach OXAXXB i OYAY YB można opisać okręgi
(o średnicach OX i OY ), więc mamy następujący ciąg równoważności:
|?AOX| = |?BOY | ⇔ |?XAXBX| = |?YBYAY | ⇔ |?OXBXA| = |?OYAYB | ⇔
na czworokącie XAYAYBXB można opisać okrąg. Na koniec zaobserwujmy, że
środek odcinka XY leży na symetralnych odcinków XAYA i XBYB, ponieważ
XAYAY X i YBXBXY są trapezami prostokątnymi. Z tego wnioskujemy, że jest
to środek okręgu opisanego na czworokącie XAXBYBYA.

Twierdzenie 2. Niech punkt T1 będzie wspólnym punktem czewian AP1, BQ1
i CR1, a punkty P2, Q2, R2 są wybrane w taki sposób, by proste AP2, BQ2,
CR2 były izogonalnie sprzężone z, odpowiednio, AP1, BQ1, CR1 w kątach
BAC, CBA, ACB. Przy powyższych założeniach odcinki AP2, BQ2, CR2
również przecinają się w jednym punkcie (rysunek 2).

Dowód. Oznaczmy miary kątów trójkąta ABC przy wierzchołkach A, B, C,
przez, odpowiednio, α, β, γ. Niech ponadto (są to kąty zaznaczone
na rysunku 2):

α1 = |?BAP1| = |?P2AC|,
β1 = |?CBQ1| = |?Q2BA|,
γ1 = |?ACR1| = |?R2CB|.

oraz α2 = α − α1; analogicznie β2 i γ2. Skorzystamy z trygonometrycznego
twierdzenia Cevy. Dla czewian AP1, BQ1, CR1 oraz, odpowiednio, dla czewian
AP2, BQ2, CR2 otrzymujemy

t1 = sin α1
sin α2

· sin β1
sin β2

· sin γ1
sin γ2

, t2 = sin α2
sin α1

· sin β2
sin β1

· sin γ2
sin γ1

.

Zwróćmy uwagę, że powyższe wzory pozostają prawdziwe niezależnie od wyboru
czewian AP1, BQ1, CR1 wewnątrz trójkąta ABC. Ponieważ t1t2 = 1, mamy
t1 = 1 ⇔ t2 = 1, co kończy dowód.

W tej sytuacji punkty T1 i T2 nazywamy izogonalnie sprzężonymi w trójkącie
ABC. Oto kilka słynnych par takich punktów: środek okręgu wpisanego ze sobą,
środek okręgu opisanego z ortocentrum, środek ciężkości z punktem Lemoine’a,
punkt Gergonne’a z punktem Nagela, punkty Brocarda jeden z drugim.

Zadania
1. Wykazać, że punkty T1 i T2 są sprzężone izogonalnie w trójkącie ABC wtedy

i tylko wtedy, gdy rzuty prostokątne punktów T1 i T2 na boki trójkąta ABC
(łącznie 6 punktów) leżą na jednym okręgu, którego środek pokrywa się ze
środkiem odcinka T1T2.

2. Znaleźć związek zadania 1 z okręgiem dziewięciu punktów.
3. Dany jest trójkąt ABC, w którym |?ABC| > 90◦. Punkty P i Q leżą na

symetralnej odcinka AB, wewnątrz kąta ACB, przy czym |?ACP | = |?BCQ|.
Dowieść, że |?PAC| + |?QBC| = 180◦. (Obóz OM, 2004)

4. Na bokach trójkąta ABC zbudowano, po jego zewnętrznej stronie, prostokąty
ABDE, BCGF , CAHI. Udowodnić, że symetralne odcinków DF , GI, HE
przecinają się w jednym punkcie. (Obóz OM, 2004)
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